Fitting Surfaces to Polygonal Meshes using Parametric Pseudo-Manifolds

Tutorial 3

SIBGRAPIİ
XXI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING

CAMPO GRANDE/MS - BRAZIL
October 12-15, 2008

Instructors

Prof. Jean Gallier, Ph.D., 1978

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA, USA
jean@cis.upenn.edu
http://www.cis.upenn.edu/~jean

Instructors

Prof. Dimas M. Morera, Dr., 2006
Instituto de Matemática
Universidade Federal de Alagoas
Maceió, AL, Brasil
dimasmm@gmail.com
http://www.impa.br/~dimasmm

Instructors

Prof. Gustavo Nonato, Dr., 1998

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

São Carlos, SP, Brasil
gnonato@icmc.usp.br
http://www.icmc.usp.br/~gnonato

Instructors

Prof. Marcelo Siqueira, Ph.D., 2006

Departamento de Computação e Estatística

Universidade Federal de Mato Grosso do Sul

Campo Grande, MS, Brasil
marcelo@dct.ufms.br
http://www.dct.ufms.br/~marcelo

Instructors

Prof. Luiz Velho, Ph.D., 1994

Instituto de Matemática Pura e Aplicada (IMPA)

Rio de Janeiro, RJ, Brasil

Ivelho@impa.br
http://w3.impa.br/~|velho/

Instructors

Prof. Dianna Xu, Ph.D., 2002
Computer Science Department
Bryn Mawr College
Bryn Mawr, PA, USA
dxu@cs.brynmawr.edu
http://www.cs.brynmawr.edu/~dxu

Introduction

Marcelo Siqueira UFMS

Outline

- The Surface Fitting Problem
- Traditional Approaches
- The Manifold-Based Approach
- What's Next?

The Surface Fitting Problem

The Surface Fitting Problem

We are a given a piecewise-linear surface, S_{T}, in \mathbb{R}^{3}, with an empty boundary, a positive integer k, and a positive number ϵ, \ldots

The Surface Fitting Problem

We are a given a piecewise-linear surface, S_{T}, in \mathbb{R}^{3}, with an empty boundary, a positive integer k, and a positive number ϵ, \ldots

The Surface Fitting Problem

We are a given a piecewise-linear surface, S_{T}, in \mathbb{R}^{3}, with an empty boundary, a positive integer k, and a positive number ϵ, \ldots

The Surface Fitting Problem

We are a given a piecewise-linear surface, S_{T}, in \mathbb{R}^{3}, with an empty boundary, a positive integer k, and a positive number ϵ, \ldots

The Surface Fitting Problem

The Surface Fitting Problem

The Surface Fitting Problem

Violates edge property!

The Surface Fitting Problem

Violates edge property!

The Surface Fitting Problem

Violates edge property!

The Surface Fitting Problem

They are NOT piecewise-linear surfaces

The Surface Fitting Problem

The Surface Fitting Problem

We want to find a C^{k} surface $S \subset \mathbb{R}^{3} \ldots$

The Surface Fitting Problem

We want to find a C^{k} surface $S \subset \mathbb{R}^{3} \ldots$
$S \subset \mathbb{R}^{3}$

The Surface Fitting Problem

We want to find a C^{k} surface $S \subset \mathbb{R}^{3} \ldots$

$S \subset \mathbb{R}^{3}$

The Surface Fitting Problem

The Surface Fitting Problem

such that there exists a homeomorphism, $h: S \rightarrow\left|S_{T}\right|$, satisfying

$$
\|h(v)-v\| \leq \epsilon,
$$

for every vertex v of S_{T}.

The Surface Fitting Problem

such that there exists a homeomorphism, $h: S \rightarrow\left|S_{T}\right|$, satisfying

$$
\|h(v)-v\| \leq \epsilon,
$$

for every vertex v of S_{T}.
S_{T}

The Surface Fitting Problem

such that there exists a homeomorphism, $h: S \rightarrow\left|S_{T}\right|$, satisfying

$$
\|h(v)-v\| \leq \epsilon,
$$

for every vertex v of S_{T}.

$$
S
$$

Topological and geometric guarantees!

The Surface Fitting Problem

The Surface Fitting Problem

From now on, we will refer to S_{T} as a polygonal mesh.

The Surface Fitting Problem

The Surface Fitting Problem

- It is a well-known and fundamental problem in CAGD.

The Surface Fitting Problem

- It is a well-known and fundamental problem in CAGD.
- Reasonably well-solved for $k=1,2$, but not higher.

The Surface Fitting Problem

- It is a well-known and fundamental problem in CAGD.
- Reasonably well-solved for $k=1,2$, but not higher.
- Higher values of k are desirable in many applications.

Traditional Approaches

Traditional Approaches

The most popular approach is certainly the parametric surface one.

Traditional Approaches

The most popular approach is certainly the parametric surface one.

Key idea:

- Assign a parametric patch to each triangle of S_{T}.

Traditional Approaches

The most popular approach is certainly the parametric surface one.

Key idea:

- Assign a parametric patch to each triangle of S_{T}.

Traditional Approaches

Traditional Approaches

and

- stitch the patches together along their common edges and vertices.

Traditional Approaches

and

- stitch the patches together along their common edges and vertices.

S_{T}
S
Continuity is enforced by control point placement!

Traditional Approaches

Traditional Approaches

There are several drawbacks with this approach:

- The degree d of the patches depends on k and grows rapidly with it.

Traditional Approaches

There are several drawbacks with this approach:

- The degree d of the patches depends on k and grows rapidly with it.
- Large values of d yield surfaces of poor visual quality.

Traditional Approaches

There are several drawbacks with this approach:

- The degree d of the patches depends on k and grows rapidly with it.
- Large values of d yield surfaces of poor visual quality.
- The larger d is, the larger the number of control points.

Traditional Approaches

Traditional Approaches

- The larger d is, the larger the number of control points and the more difficult the problem of control point placement.

Traditional Approaches

- The larger d is, the larger the number of control points and the more difficult the problem of control point placement.
- Local control of geometry is not very flexible.

Traditional Approaches

- The larger d is, the larger the number of control points and the more difficult the problem of control point placement.
- Local control of geometry is not very flexible.
[Loop and DeRose, 1989], [Seidel, 1994], [Prautzsch, 1997], and [Reif, 1998] give C^{k} parametric approaches for arbitrary k.

Traditional Approaches

Traditional Approaches

Another popular approach consists of using subdivision surfaces.

Traditional Approaches

Traditional Approaches

Subdivision surfaces are probably the easiest and more intuitive solution for the problem whenever the smoothness degree, k, is not large.

Traditional Approaches

Subdivision surfaces are probably the easiest and more intuitive solution for the problem whenever the smoothness degree, k, is not large.

For large values of k, the few existing schemes are rather complex.

Traditional Approaches

Subdivision surfaces are probably the easiest and more intuitive solution for the problem whenever the smoothness degree, k, is not large.

For large values of k, the few existing schemes are rather complex.

See [Warren, 2002].

Traditional Approaches

Traditional Approaches

Implicit surfaces can also be used to solve the problem.

Traditional Approaches

Implicit surfaces can also be used to solve the problem.

They can naturally define C^{∞} surfaces.

Traditional Approaches

Implicit surfaces can also be used to solve the problem.

They can naturally define C^{∞} surfaces.

In general, the fitting problem is made into an interpolation problem.

Traditional Approaches

Implicit surfaces can also be used to solve the problem.

They can naturally define C^{∞} surfaces.

In general, the fitting problem is made into an interpolation problem.

Then, one can use RBF, MPU, moving least squares, etc.

Traditional Approaches

Traditional Approaches

The main drawback of this implict surface-based approach is that the topological condition becomes a lot harder to satisfy.

Traditional Approaches

The main drawback of this implict surface-based approach is that the topological condition becomes a lot harder to satisfy.

More recent results might overcome this difficulty.

Traditional Approaches

The main drawback of this implict surface-based approach is that the topological condition becomes a lot harder to satisfy.

More recent results might overcome this difficulty.

See [Shen, O'Brien, and Shewchuk, 2004] and [Kolluri, 2005].

Traditional Approaches

The main drawback of this implict surface-based approach is that the topological condition becomes a lot harder to satisfy.

More recent results might overcome this difficulty.

See [Shen, O'Brien, and Shewchuk, 2004] and [Kolluri, 2005].

Implicit and parametric surfaces have complementary features.

The Manifold-Based Approach

The Manifold-Based Approach

An often neglected approach, the manifold-based one, has the potential to easily produce C^{k} surfaces, for an arbitrary k (including $k=\infty$).

The Manifold-Based Approach

An often neglected approach, the manifold-based one, has the potential to easily produce C^{k} surfaces, for an arbitrary k (including $k=\infty$).

The manifold approach has also some advantages over the traditional approaches when it comes to certain applications, such as texture synthesis and the solution of equations on surfaces.

The Manifold-Based Approach

The Manifold-Based Approach

Here, we

The Manifold-Based Approach

Here, we

- describe the manifold-based approach for the surface fitting problem,

The Manifold-Based Approach

Here, we

- describe the manifold-based approach for the surface fitting problem,
- review the main existing solutions and their limitations, and

The Manifold-Based Approach

Here, we

- describe the manifold-based approach for the surface fitting problem,
- review the main existing solutions and their limitations, and
- point out some applications and research challenges in Computer Graphics, Image Processing, and Computer Vision that can be more naturally tackled by using manifolds.

What's Next?

What's Next?

II. Manifolds

What's Next?

II. Manifolds
III. Constructing Manifolds

What's Next?

II. Manifolds
III. Constructing Manifolds
IV. Fitting Surfaces to Polygonal Meshes - Part I

What's Next?

II. Manifolds
III. Constructing Manifolds
IV. Fitting Surfaces to Polygonal Meshes - Part I

Coffee break

What's Next?

What's Next?

V. Fitting Surfaces to Polygonal Meshes - Part II

What's Next?

V. Fitting Surfaces to Polygonal Meshes - Part II
VI. Adaptive Manifold Fitting - Part I

What's Next?

V. Fitting Surfaces to Polygonal Meshes - Part II
VI. Adaptive Manifold Fitting - Part I
V. Adaptive Manifold Fitting - Part II

What's Next?

V. Fitting Surfaces to Polygonal Meshes - Part II
VI. Adaptive Manifold Fitting - Part I
V. Adaptive Manifold Fitting - Part II
VIII. Applications of Manifolds and Research Challenges

Manifolds

Jean Gallier
UPenn

Outline

- Manifolds: Brief History
- Informal definition
- Formal definition
- Examples
- The Sphere
- Real Projective Space
- Conclusions

Origins of Manifolds

Origins of Manifolds

- Around 1860, Mobius, Jordan, and Dyck studied the topology of surfaces.

Origins of Manifolds

- Around 1860, Mobius, Jordan, and Dyck studied the topology of surfaces.
- In a famous paper published in 1888, Dyck already uses the term manifold (in German).

Origins of Manifolds

- Around 1860, Mobius, Jordan, and Dyck studied the topology of surfaces.
- In a famous paper published in 1888, Dyck already uses the term manifold (in German).
- In the early 1900's, Dehn, Heegaard, Veblen and Alexander routinely used the term manifold.

Origins of Manifolds

- Around 1860, Mobius, Jordan, and Dyck studied the topology of surfaces.
- In a famous paper published in 1888, Dyck already uses the term manifold (in German).
- In the early 1900's, Dehn, Heegaard, Veblen and Alexander routinely used the term manifold.
- Hermann Weyl was among the first to give a rigorous definition (1913).

Keys Contributors to the notion of manifold:

Keys Contributors to the notion of manifold:

Georg Friedrich Bernhard Riemann 1826-1866

Keys Contributors to the notion of manifold:

Georg Friedrich Bernhard Riemann 1826-1866

Hermann Klaus Hugo Weyl 1885-1955

Keys Contributors to the notion of manifold:

Keys Contributors to the notion of manifold:

Hermann Weyl (again)

Keys Contributors to the notion of manifold:

Hermann Weyl (again)

Hassler Whitney
1907-1989

Manifold: An Intuitive Picture

Manifold: An Intuitive Picture

Manifolds: Informal Definition

Manifolds: Informal Definition

- A manifold is a topological space with an open cover so that every open set in this cover "looks" like an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

- A manifold is a topological space with an open cover so that every open set in this cover "looks" like an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

- A manifold is a topological space with an open cover so that every open set in this cover "looks" like an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

Manifolds: Informal Definition

- To make our informal notion precise, we use homeomorphisms, $\varphi: U \rightarrow \Omega$, where $\Omega \subseteq \mathbb{R}^{n}$ is an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

- To make our informal notion precise, we use homeomorphisms, $\varphi: U \rightarrow \Omega$, where $\Omega \subseteq \mathbb{R}^{n}$ is an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

- To make our informal notion precise, we use homeomorphisms, $\varphi: U \rightarrow \Omega$, where $\Omega \subseteq \mathbb{R}^{n}$ is an open subset of \mathbb{R}^{n}.

Manifolds: Informal Definition

Manifolds: Informal Definition

- We also want to be able "to do calculus" on our manifolds. For this we need some conditions on overlaps of open sets.

Manifolds: Informal Definition

Manifolds: Informal Definition

- Whenever $U_{i} \cap U_{j} \neq \emptyset$, we need some condition on the transition function,

$$
\varphi_{j i}=\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right) .
$$

Manifolds: Informal Definition

- Whenever $U_{i} \cap U_{j} \neq \emptyset$, we need some condition on the transition function,

$$
\varphi_{j i}=\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right) .
$$

Manifolds: Informal Definition

- Whenever $U_{i} \cap U_{j} \neq \emptyset$, we need some condition on the transition function,

$$
\varphi_{j i}=\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)
$$

Manifolds: Informal Definition

- Whenever $U_{i} \cap U_{j} \neq \emptyset$, we need some condition on the transition function,

$$
\varphi_{j i}=\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)
$$

Manifolds: Informal Definition

- Whenever $U_{i} \cap U_{j} \neq \emptyset$, we need some condition on the transition function,

$$
\varphi_{j i}=\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)
$$

Manifolds: Informal Definition

Manifolds: Informal Definition

- This is a map between two open subsets of \mathbb{R}^{n} and we require it possess a certain amount of smoothness.

Manifolds: Formal Definition

Manifolds: Formal Definition

Recall the definition of a manifold...

Manifolds: Formal Definition

Recall the definition of a manifold...
topological space

Manifolds: Formal Definition

Recall the definition of a manifold...
topological space
homeomorphism

Manifolds: Formal Definition

Recall the definition of a manifold...
topological space
homeomorphism

(U, φ) is called a chart.

Manifolds: Formal Definition

Manifolds: Formal Definition

Manifolds: Formal Definition

Manifolds: Formal Definition

$$
\begin{aligned}
& \varphi_{21}: \varphi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \varphi_{2}\left(U_{1} \cap U_{2}\right) \\
& \varphi_{12}: \varphi_{2}\left(U_{1} \cap U_{2}\right) \rightarrow \varphi_{1}\left(U_{1} \cap U_{2}\right)
\end{aligned}
$$

Manifolds: Formal Definition

\mathbb{R}^{n}

$$
\begin{aligned}
& \varphi_{21}: \varphi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \varphi_{2}\left(U_{1} \cap U_{2}\right) \\
& \varphi_{12}: \varphi_{2}\left(U_{1} \cap U_{2}\right) \rightarrow \varphi_{1}\left(U_{1} \cap U_{2}\right)
\end{aligned}
$$

Manifolds: Formal Definition

Manifolds: Formal Definition

φ_{21} and φ_{12} are the transition functions.

Manifolds: Formal Definition

Manifolds: Formal Definition

A $C^{k} n$-atlas is a family of charts, $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{(i \in I)}$, where I is a non-empty countable set, and such that the following conditions hold:

Manifilds: Formal Defnition

A $C^{k} n$-atlas is a family of charts, $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{(i \in I)}$, where I is a non-empty countable set, and such that the following conditions hold:
(1) $\varphi_{i}\left(U_{i}\right) \subseteq \mathbb{R}^{n}$, for all i.

Manifilds: Formal Deffinition

A $C^{k} n$-atlas is a family of charts, $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{(i \in I)}$, where I is a non-empty countable set, and such that the following conditions hold:
(1) $\varphi_{i}\left(U_{i}\right) \subseteq \mathbb{R}^{n}$, for all i.
(2) $M=\bigcup_{i \in I} U_{i}$.

Manifolds: Formal Deffinition

A $C^{k} n$-atlas is a family of charts, $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{(i \in I)}$, where I is a non-empty countable set, and such that the following conditions hold:
(1) $\varphi_{i}\left(U_{i}\right) \subseteq \mathbb{R}^{n}$, for all i.
(2) $M=\bigcup_{i \in I} U_{i}$.
(3) Whenever $U_{i} \cap U_{j} \neq \emptyset$, the transition function $\varphi_{j i}$ (resp. $\left.\varphi_{i j}\right)$ is a C^{k} diffeomorphism.

Manifolds: Formal Definition

Manifolds: Formal Definition

Atlas: $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right),\left(U_{4}, \varphi_{4}\right)\right\}$

Manifolds: Formal Definition

$$
M=\bigcup_{i=1}^{4} U_{i}
$$

Aflas: $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right),\left(U_{4}, \varphi_{4}\right)\right\}$

Manifolds: Formal Definition

$$
M=\bigcup_{i=1}^{4} U_{i}
$$

φ_{i} is a C^{k} diffeomorphism

Atlas: $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right),\left(U_{4}, \varphi_{4}\right)\right\}$

Manifolds: Formal Definition

Manifolds: Formal Definition

The existence of a C^{k} atlas on a topological space, M, is sufficient to establish that M is an n-dimensional C^{k} manifold, but...

Manifilds: Formal Defnititon

The existence of a C^{k} atlas on a topological space, M, is sufficient to establish that M is an n-dimensional C^{k} manifold, but...

- there may be many choice of atlases;

Manifilds: Formal Defnititon

The existence of a C^{k} atlas on a topological space, M, is sufficient to establish that M is an n-dimensional C^{k} manifold, but...

- there may be many choice of atlases;
- we get around this problem by defining a notion of atlas compatibility;

Manifolds: Formal Deffinition

The existence of a C^{k} atlas on a topological space, M, is sufficient to establish that M is an n-dimensional C^{k} manifold, but...

- there may be many choice of atlases;
- we get around this problem by defining a notion of atlas compatibility;
- this notion induces an equivalence relation of atlases on M;

Manifolds: Formal Deffinition

The existence of a C^{k} atlas on a topological space, M, is sufficient to establish that M is an n-dimensional C^{k} manifold, but...

- there may be many choice of atlases;
- we get around this problem by defining a notion of atlas compatibility;
- this notion induces an equivalence relation of atlases on M;
- the set of all charts compatible with a given atlas is a maximum atlas in its class.

Manifolds: Formal Definition

Manifolds: Formal Definition

To avoid pathological cases and to ensure that a manifold is always embeddable in \mathbb{R}^{n}, for some $n \geq 1$, we further require that the topology of M be Hausdorff and secondcountable.

Examples

Examples

- The sphere

$$
S^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2}=1\right\} .
$$

\mathbb{R}^{3}

Examples

Examples

- We use stereographic projection from the north pole...

Examples

- We use stereographic projection from the north pole ...

$$
\sigma_{N}: S^{n}-\{N\} \longrightarrow \mathbb{R}^{n}
$$

Examples

- We use stereographic projection from the north pole ...

Examples

- We use stereographic projection from the north pole ...

Examples

- We use stereographic projection from the north pole ...

Examples

Examples

and from the south pole:

Examples

and from the south pole:

$$
\sigma_{S}: S^{n}-\{S\} \longrightarrow \mathbb{R}^{n}
$$

Examples

and from the south pole:

$$
\sigma_{S}: S^{n}-\{S\} \longrightarrow \mathbb{R}^{n}
$$

Examples

and from the south pole:

$$
\sigma_{S}: S^{n}-\{S\} \longrightarrow \mathbb{R}^{n}
$$

Examples

and from the south pole:

Examples

Examples

- Inverse stereographic projections:

Examples

- Inverse stereographic projections:

$$
\sigma_{N}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)+1}\left(2 x_{1}, \ldots, 2 x_{n},\left(\sum_{i=1}^{n} x_{i}^{2}\right)-1\right)
$$

Examples

- Inverse stereographic projections:

$$
\sigma_{N}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)+1}\left(2 x_{1}, \ldots, 2 x_{n},\left(\sum_{i=1}^{n} x_{i}^{2}\right)-1\right)
$$

and

Examples

- Inverse stereographic projections:

$$
\sigma_{N}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)+1}\left(2 x_{1}, \ldots, 2 x_{n},\left(\sum_{i=1}^{n} x_{i}^{2}\right)-1\right)
$$

and

$$
\sigma_{S}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)+1}\left(2 x_{1}, \ldots, 2 x_{n},-\left(\sum_{i=1}^{n} x_{i}^{2}\right)+1\right)
$$

Examples

Examples

- Consider the open cover consisting of

$$
U_{N}=S^{n}-\{N\} \quad \text { and } \quad U_{S}=S^{n}-\{S\}
$$

Examples

- Consider the open cover consisting of

$$
U_{N}=S^{n}-\{N\} \quad \text { and } \quad U_{S}=S^{n}-\{S\}
$$

Examples

- Consider the open cover consisting of

$$
U_{N}=S^{n}-\{N\} \quad \text { and } \quad U_{S}=S^{n}-\{S\}
$$

Examples

- Consider the open cover consisting of

$$
U_{N}=S^{n}-\{N\} \quad \text { and } \quad U_{S}=S^{n}-\{S\}
$$

Examples

- Consider the open cover consisting of

$$
U_{N}=S^{n}-\{N\} \quad \text { and } \quad U_{S}=S^{n}-\{S\}
$$

Examples

Examples

- On the overlap,

$$
U_{N} \cap U_{S}=S^{n}-\{N, S\}
$$

Examples

- On the overlap,

$$
U_{N} \cap U_{S}=S^{n}-\{N, S\}
$$

Examples

- On the overlap,

$$
U_{N} \cap U_{S}=S^{n}-\{N, S\} .
$$

Examples

Examples

- The transition maps

$$
\sigma_{S} \circ \sigma_{N}^{-1}=\sigma_{N} \circ \sigma_{S}^{-1}
$$

are given by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto \frac{1}{\sum_{i=1}^{n} x_{i}^{2}}\left(x_{1}, \ldots, x_{n}\right)
$$

Examples

Examples

- Consequently,

$$
\left(U_{N}, \sigma_{N}\right) \quad \text { and } \quad\left(U_{S}, \sigma_{S}\right)
$$

form a smooth atlas for S^{n}.

Examples

- Consequently,

$$
\left(U_{N}, \sigma_{N}\right) \quad \text { and } \quad\left(U_{S}, \sigma_{S}\right)
$$

form a smooth atlas for S^{n}

- So, the sphere is a smooth manifold.

Examples

Examples

- The real projective space, $\mathbb{R} \mathbb{P}^{n}$.

Examples

- The real projective space, $\mathbb{R P}^{n}$.
- This is the space of all lines through the origin of \mathbb{R}^{n+1}.

Examples

- The real projective space, $\mathbb{R P}^{n}$.
- This is the space of all lines through the origin of \mathbb{R}^{n+1}.

Examples

Examples

- Equivalent definition:

Define an equivalence relation on nonzero vector in \mathbb{R}^{n+1} as follows:
$u \sim v \quad$ iff $\quad v=\lambda u$, for some $\lambda \neq 0 \in \mathbb{R}$.

Examples

- Equivalent definition:

Define an equivalence relation on nonzero vector in \mathbb{R}^{n+1} as follows:

$$
u \sim v \quad \text { iff } \quad v=\lambda u, \text { for some } \lambda \neq 0 \in \mathbb{R} .
$$

- Denote the equivalence class of $\left(x_{1}, \ldots, x_{n+1}\right)$ by

$$
\left(x_{1}: \cdots: x_{n+1}\right)
$$

also called homogeneous coordinates.

Examples

Examples

- Let

$$
U_{i}=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \in \mathbb{R} \mathbb{P}^{n} \mid x_{i} \neq 0\right\}
$$

Examples

- Let

$$
U_{i}=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \in \mathbb{R P}^{n} \mid x_{i} \neq 0\right\}
$$

$\mathbb{R} \mathbb{P}^{2}$
$U_{1}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid x \neq 0\right\}$

Examples

- Let

$$
U_{i}=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \in \mathbb{R P}^{n} \mid x_{i} \neq 0\right\} .
$$

$U_{1}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid x \neq 0\right\} \quad U_{2}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid y \neq 0\right\}$

Examples

- Let

$$
U_{i}=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \in \mathbb{R P}^{n} \mid x_{i} \neq 0\right\} .
$$

$U_{1}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid x \neq 0\right\} \quad U_{2}=\left\{(x: y: z) \in \mathbb{R}^{2} \mid y \neq 0\right\} \quad U_{3}=\left\{(x: y: z) \in \mathbb{R}^{2} \mid z \neq 0\right\}$

Examples

Examples

- Define $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ by

$$
\varphi_{i}\left(x_{1}: \cdots: x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right) .
$$

Examples

- Define $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ by

$$
\varphi_{i}\left(x_{1}: \cdots: x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right) .
$$

$\mathbb{R} \mathbb{P}^{2}$

Examples

- Define $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ by

$$
\varphi_{i}\left(x_{1}: \cdots: x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right) .
$$

Examples

- Define $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ by

$$
\varphi_{i}\left(x_{1}: \cdots: x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right) .
$$

Examples

Examples

- The inverse maps are given by

$$
\psi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}: \cdots: x_{i-1}: 1: x_{i+1}: \cdots: x_{n}\right)
$$

Examples

- The inverse maps are given by

$$
\psi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}: \cdots: x_{i-1}: 1: x_{i+1}: \cdots: x_{n}\right) .
$$

- On the overlap, $U_{i} \cap U_{j}$,

$$
\begin{aligned}
& \left(\varphi_{j} \circ \varphi_{i}^{-1}\right)\left(x_{1}, \ldots, x_{n}\right)= \\
& \quad\left(\frac{x_{1}}{x_{j}}, \ldots, \frac{x_{i-1}}{x_{j}}, \frac{1}{x_{j}}, \frac{x_{i}}{x_{j}}, \ldots, \frac{x_{j-1}}{x_{j}}, \frac{x_{j+1}}{x_{j}}, \ldots, \frac{x_{n}}{x_{j}}\right)
\end{aligned}
$$

Examples

- The inverse maps are given by

$$
\psi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}: \cdots: x_{i-1}: 1: x_{i+1}: \cdots: x_{n}\right) .
$$

- On the overlap, $U_{i} \cap U_{j}$,

$$
\begin{aligned}
& \left(\varphi_{j} \circ \varphi_{i}^{-1}\right)\left(x_{1}, \ldots, x_{n}\right)= \\
& \quad\left(\frac{x_{1}}{x_{j}}, \ldots, \frac{x_{i-1}}{x_{j}}, \frac{1}{x_{j}}, \frac{x_{i}}{x_{j}}, \ldots, \frac{x_{j-1}}{x_{j}}, \frac{x_{j+1}}{x_{j}}, \ldots, \frac{x_{n}}{x_{j}}\right)
\end{aligned}
$$

- As these maps are smooth, real projective space is a smooth manifold.

Conclusions

Conclusions

- In the next part of the tutorial, we will show that a manifold can be reconstructed from its transition functions.

Conclusions

- In the next part of the tutorial, we will show that a manifold can be reconstructed from its transition functions.
- Such a construction was first proposed by Andre Weil around 1944 in his book, Foundations of Algebraic Geometry.

Conclusions

- In the next part of the tutorial, we will show that a manifold can be reconstructed from its transition functions.
- Such a construction was first proposed by Andre Weil around 1944 in his book, Foundations of Algebraic Geometry.
- A similar approach was used to construct fiber bundles in the 1950's (Steenrod).

Constructing Manifolds from Sets of Gluing Data

Jean Gallier
UPenn

Outline

- Motivations
- Sets of gluing data
- Transition functions
- The cocyle condition
- Parametric pseudo manifolds (PPM's)
- Conclusions

Motivations

Motivations

- Recall that we want to define a surface S that approximates the underlying surface, $\left|S_{T}\right|$, of a given polygonal surface (mesh), S_{T}.

Motivations

- Recall that we want to define a surface S that approximates the underlying surface, $\left|S_{T}\right|$, of a given polygonal surface (mesh), S_{T}.
- More specifically, we want to build a C^{k} two-dimensional manifold in \mathbb{R}^{3}.

Motivations

- Recall that we want to define a surface S that approximates the underlying surface, $\left|S_{T}\right|$, of a given polygonal surface (mesh), S_{T}.
- More specifically, we want to build a C^{k} two-dimensional manifold in \mathbb{R}^{3}.
- Our plan is to define S constructively by building a manifold.

Motivations

Motivations

A LITTLE PROBLEM:

Our definition of manifold is not constructive: it states what a manifold is by assuming it already exists! So, for our purposes, it is not useful!

Motivations

A LITTLE PROBLEM:

Our definition of manifold is not constructive: it states what a manifold is by assuming it already exists! So, for our purposes, it is not useful!

THE KEY IDEA:

The notion of a set of gluing data.

Sets of Gluing Data

Sets of Gluing Data

Let n and k be integers such that $n \geq 1$ and $k \geq 1$ (or $k=\infty$).

Sets of Gluing Data

Let n and k be integers such that $n \geq 1$ and $k \geq 1$ (or $k=\infty)$.

A set of gluing data is a triple

$$
\mathcal{G}=\left(\left(\Omega_{i}\right)_{i \in I},\left(\Omega_{i j}\right)_{(i, j) \in I \times I},\left(\varphi_{j i}\right)_{(i, j) \in K \times K}\right)
$$

satisfying the following properties, where I and K are countable sets and I is non-empty:

Sets of Gluing Data

Sets of Gluing Data

(1) For every $i \in I$, the set Ω_{i} is a non-empty open subset of \mathbb{R}^{n} called parametrization domain, for short, p domain, and the Ω_{i} are pairwise disjoint (i.e., $\Omega_{i} \cap \Omega_{j}=$ \emptyset for all $i \neq j$).

Sets of Gluing Data

(1) For every $i \in I$, the set Ω_{i} is a non-empty open subset of \mathbb{R}^{n} called parametrization domain, for short, pdomain, and the Ω_{i} are pairwise disjoint (i.e., $\Omega_{i} \cap \Omega_{j}=$ \emptyset for all $i \neq j$).

Sets of Gluing Data

Sets of Gluing Data

(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$, and $\Omega_{j i} \neq \emptyset$ if and only if $\Omega_{i j} \neq \emptyset$. Each non-empty $\Omega_{i j}$ (with $i \neq j$) is called gluing domain.

Sets of Gluing Data

(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$, and $\Omega_{j i} \neq \emptyset$ if and only if $\Omega_{i j} \neq \emptyset$. Each non-empty $\Omega_{i j}$ (with $i \neq j$) is called gluing domain.

Sets of Gluing Data

(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$, and $\Omega_{j i} \neq \emptyset$ if and only if $\Omega_{i j} \neq \emptyset$. Each non-empty $\Omega_{i j}$ (with $i \neq j$) is called gluing domain.

Sets of Gluing Data

(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$, and $\Omega_{j i} \neq \emptyset$ if and only if $\Omega_{i j} \neq \emptyset$. Each non-empty $\Omega_{i j}$ (with $i \neq j$) is called gluing domain.

Sets of Gluing Data

Sets of Gluing Data

(3) If we let

$$
K=\left\{(i, j) \in I \times I \mid \Omega_{i j} \neq \emptyset\right\},
$$

then

$$
\varphi_{j i}: \Omega_{i j} \longrightarrow \Omega_{j i}
$$

is a C^{k} bijection for every $(i, j) \in K$, called a transition function or gluing function.

Transition Functions

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

- The transition functions tell us how to glue the p domains.

Ω_{1}

...
Ω_{i}

Transition Functions

- The transition functions tell us how to glue the p domains.

Ω_{12}

Ω_{i}

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

- The transition functions tell us how to glue the p domains.

Transition Functions

Transition Functions

The transition functions must satisfy the following conditions:

Transition Functions

The transition functions must satisfy the following conditions:
(a) $\varphi_{i i}=\operatorname{id}_{\Omega_{i}}$, for all $i \in I$,

Transition Functions

Transition Functions

(b) $\varphi_{i j}=\varphi_{j i}^{-1}$, for all $(i, j) \in K$, and

Transition Functions

(b) $\varphi_{i j}=\varphi_{j i}^{-1}$, for all $(i, j) \in K$, and

Transition Functions

(b) $\varphi_{i j}=\varphi_{j i}^{-1}$, for all $(i, j) \in K$, and

Transition Functions

(b) $\varphi_{i j}=\varphi_{j i}^{-1}$, for all $(i, j) \in K$, and

Transition Functions

Transition Functions

(c) for all i, j, and k, if $\Omega_{j i} \cap \Omega_{j k} \neq \emptyset$ then $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap\right.$ $\left.\Omega_{j k}\right) \subseteq \Omega_{i k}$ and $\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x)$, for all $x \in$ $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)$.

Transition Functions

(c) for all i, j, and k, if $\Omega_{j i} \cap \Omega_{j k} \neq \emptyset$ then $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap\right.$ $\left.\Omega_{j k}\right) \subseteq \Omega_{i k}$ and $\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x)$, for all $x \in$ $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)$.

Transition Functions

(c) for all i, j, and k, if $\Omega_{j i} \cap \Omega_{j k} \neq \emptyset$ then $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap\right.$ $\left.\Omega_{j k}\right) \subseteq \Omega_{i k}$ and $\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x)$, for all $x \in$ $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)$.

Transition Functions

(c) for all i, j, and k, if $\Omega_{j i} \cap \Omega_{j k} \neq \emptyset$ then $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap\right.$ $\left.\Omega_{j k}\right) \subseteq \Omega_{i k}$ and $\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x)$, for all $x \in$ $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)$.

The Cocycle Condition

The Cocycle Condition

The "evil" cocycle condition

$$
\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x), \text { for all } x \in \varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)
$$

The Cocycle Condition

The "evil" cocycle condition

$$
\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x), \text { for all } x \in \varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right) .
$$

The Cocycle Condition

The "evil" cocycle condition

The Cocycle Condition

The Cocycle Condition

- The cocycle condition implies conditions (a) and (b).

The Cocycle Condition

- The cocycle condition implies conditions (a) and (b).
- Previous versions found in the literature are often incorrect.

The Cocycle Condition

- This is because the transition maps are only partial functions!

The Cocycle Condition

- This is because the transition maps are only partial functions!

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

- The question now becomes:

Parametric Pseudo-Manifolds

- The question now becomes:

Given a set of gluing data, \mathcal{G}, can we build a manifold from it?

Parametric Pseudo-Manifolds

- The question now becomes:

Given a set of gluing data, \mathcal{G}, can we build a manifold from it?

- Indeed, such a manifold is built by a quotient construction.

Parametric Pseudo-Manifolds

- The question now becomes:

Given a set of gluing data, \mathcal{G}, can we build a manifold from it?

- Indeed, such a manifold is built by a quotient construction.
- We form the disjoint union of the Ω_{i} and we identify $\Omega_{i j}$ with $\Omega_{j i}$ using $\varphi_{j i}$, an equivalence relation, \sim. We form the quotient

$$
M_{\mathcal{G}}=\left(\coprod_{i} \Omega_{77}\right) / \sim,
$$

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Theorem 1 [Gallier, Siqueira, and $\mathrm{Xu}, 2008$]
For every set of gluing data,

$$
\mathcal{G}=\left(\left(\Omega_{i}\right)_{i \in I},\left(\Omega_{i j}\right)_{(i, j) \in I \times I},\left(\varphi_{j i}\right)_{(i, j) \in K \times K}\right),
$$

there is an n-dimensional C^{k} manifold, $M_{\mathcal{G}}$, whose transition functions are the $\varphi_{j i}$'s.

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

REMARK:

A condition on the gluing data is needed to make sure that $M_{\mathcal{G}}$ is Hausdorff. Since it is quite technical, we will not show it here.

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Theorem 1 is very nice, but ...

Parametric Pseudo-Manifolds

Theorem 1 is very nice, but ...

- Our proof is not constructive;

Parametric Pseudo-Manifolds

Theorem 1 is very nice, but ...

- Our proof is not constructive;
- $M_{\mathcal{G}}$ is an abstract entity, which may not even be compact, orientable, etc.

Parametric Pseudo-Manifolds

Theorem 1 is very nice, but ...

- Our proof is not constructive;
- $M_{\mathcal{G}}$ is an abstract entity, which may not even be compact, orientable, etc.

So, the question that remains is how to build a concrete manifold.

Parametric Pseudo-Manifolds

Theorem 1 is very nice, but ...

- Our proof is not constructive;
- $M_{\mathcal{G}}$ is an abstract entity, which may not even be compact, orientable, etc.

So, the question that remains is how to build a concrete manifold.

Let us first formalize our notion of "concreteness".

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Let n, m, and k be integers, with $m>n \geq 1$ and $k \geq 1$ or $k=\infty$.

Parametric Pseudo-Manifolds

Let n, m, and k be integers, with $m>n \geq 1$ and $k \geq 1$ or $k=\infty$.

A parametric C^{k} pseudo-manifold of dimension n in \mathbb{R}^{m} is a pair,

$$
\mathcal{M}=\left(\mathcal{G},\left(\theta_{i}\right)_{i \in I}\right),
$$

such that $\mathcal{G}=\left(\left(\Omega_{i}\right)_{i \in I},\left(\Omega_{i j}\right)_{(i, j) \in I \times I},\left(\varphi_{i j}\right)_{(i, j) \in K \times K}\right)$ is a set of gluing data, for some finite I, and each θ_{i} is a C^{k} function, $\theta_{i}: \Omega_{i} \rightarrow \mathbb{R}^{m}$, called a parametrization such that the following holds:

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

- When $m=3$ and $n=2$, we say that \mathcal{M} is a parametric pseudo-surface.

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

(C) For all $(i, j) \in K$, we have $\theta_{i}=\theta_{j} \circ \varphi_{j i}$.

Parametric Pseudo-Manifolds

(C) For all $(i, j) \in K$, we have $\theta_{i}=\theta_{j} \circ \varphi_{j i}$.

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

- The subset

$$
M=\bigcup_{i \in I} \theta_{i}\left(\Omega_{i}\right)
$$

of \mathbb{R}^{m} is called the image of the parametric pseudomanifold.

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

REMARK:
There is a (unique) surjective map:

$$
\Theta: M_{\mathcal{G}} \longrightarrow M .
$$

Parametric Pseudo-Manifolds

Parametric Pseudo-Manifolds

We proved that M can be given a manifold structure if we require the θ_{i} 's to be bijective and to satisfy the following conditions:

Parametric Pseudo-Manifolds

We proved that M can be given a manifold structure if we require the θ_{i} 's to be bijective and to satisfy the following conditions:
(C') For all $(i, j) \in K$,

$$
\theta_{i}\left(\Omega_{i}\right) \cap \theta_{j}\left(\Omega_{j}\right)=\theta_{i}\left(\Omega_{i j}\right)=\theta_{j}\left(\Omega_{j i}\right) .
$$

Parametric Pseudo-Manifolds

We proved that M can be given a manifold structure if we require the θ_{i} 's to be bijective and to satisfy the following conditions:
(C') For all $(i, j) \in K$,

$$
\theta_{i}\left(\Omega_{i}\right) \cap \theta_{j}\left(\Omega_{j}\right)=\theta_{i}\left(\Omega_{i j}\right)=\theta_{j}\left(\Omega_{j i}\right) .
$$

(C') For all $(i, j) \notin K$,

$$
\theta_{i}\left(\Omega_{i}\right) \cap \theta_{j}\left(\Omega_{j}\right)=\emptyset .
$$

Conclusions

Conclusions

- We can build a parametric pseudo-manifold (PPM) from a set of gluing data and, under certain conditions, the image of a PPM can be given the structure of a manifold.

Conclusions

- We can build a parametric pseudo-manifold (PPM) from a set of gluing data and, under certain conditions, the image of a PPM can be given the structure of a manifold.
- In the following lecture, we describe a new constructive approach to define a set of gluing data from a triangle mesh.

Conclusions

- We can build a parametric pseudo-manifold (PPM) from a set of gluing data and, under certain conditions, the image of a PPM can be given the structure of a manifold.
- In the following lecture, we describe a new constructive approach to define a set of gluing data from a triangle mesh.
- We also describe how to build a parametric C^{∞} pseudosurface from the set of gluing data. The image of this parametric pseudo-surface approximates the vertices of the mesh.

Fitting Surfaces to Polygonal Meshes (Part I)

Marcelo Siqueira UFMS

Outline

- The Surface Fitting Problem
- Building a Set of Gluing Data

The Surface Fitting Problem

The Surface Fitting Problem

Given a mesh S_{T} in \mathbb{R}^{3}, a positive integer k, and a positive real number ϵ, our goal here is to fit a C^{k} surface, S, in \mathbb{R}^{3} to S_{T}.

The Surface Fitting Problem

Given a mesh S_{T} in \mathbb{R}^{3}, a positive integer k, and a positive real number ϵ, our goal here is to fit a C^{k} surface, S, in \mathbb{R}^{3} to S_{T}.

The Manifold-Based Approach:
We solve the fitting problem by defining a C^{k} parametric pseudo-surface, \mathcal{M}, such that S is the image, M, of \mathcal{M} in \mathbb{R}^{3}.

The Surface Fitting Problem

The Surface Fitting Problem

Key Idea:

The Surface Fitting Problem

Key Idea:

- Use S_{T} to define the set of gluing data, \mathcal{G}, of \mathcal{M}.

The Surface Fitting Problem

Key Idea:

- Use S_{T} to define the set of gluing data, \mathcal{G}, of \mathcal{M}.
OLOGY

The Surface Fitting Problem

Key Idea:

- Use S_{T} to define the set of gluing data, \mathcal{G}, of \mathcal{M}.

- Use $\left|S_{T}\right|$ to define the set of parametrizations, $\left(\theta_{i}\right)_{i \in I}$, of \mathcal{M}.

The Surface Fitting Problem

Key Idea:

- Use S_{T} to define the set of gluing data, \mathcal{G}, of \mathcal{M}.

- Use $\left|S_{T}\right|$ to define the set of parametrizations, $\left(\theta_{i}\right)_{i \in I}$, of \mathcal{M}.

Building a Set of Gluing Data

Building a Set of Gluing Data

To define \mathcal{G}, we must

Building a Set of Gluing Data

To define \mathcal{G}, we must

- define the p-domains, $\left(\Omega_{i}\right)_{i \in I}$,

Building a Set of Gluing Data

To define \mathcal{G}, we must

- define the p-domains, $\left(\Omega_{i}\right)_{i \in I}$,
- define the gluing domains, $\left(\Omega_{i j}\right)_{(i, j) \in I \times I}$,

Building a Set of Gluing Data

To define \mathcal{G}, we must

- define the p-domains, $\left(\Omega_{i}\right)_{i \in I}$,
- define the gluing domains, $\left(\Omega_{i j}\right)_{(i, j) \in I \times I}$,
- define the transition functions, $\left(\varphi_{i, j}\right)_{(i, j) \in K \times K}$.

Building a Set of Gluing Data

To define \mathcal{G}, we must

- define the p-domains, $\left(\Omega_{i}\right)_{i \in I}$,
- define the gluing domains, $\left(\Omega_{i j}\right)_{(i, j) \in I \times I}$,
- define the transition functions, $\left(\varphi_{i, j}\right)_{(i, j) \in K \times K}$.

$$
\mathcal{G}=\left((\Omega)_{i \in I},\left(\Omega_{i, j}\right)_{(i, j) \in I \times I},\left(\varphi_{i, j}\right)_{(i, j) \in K \times K}\right)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

The BIG PICTURE

Building a Set of Gluing Data

Building a Set of Gluing Data

p-Domains

Building a Set of Gluing Data

p-Domains

Assume that S_{T} is a triangle mesh (i.e., a simplicial surface).

Building a Set of Gluing Data

p-Domains

Assume that S_{T} is a triangle mesh (i.e., a simplicial surface).

Building a Set of Gluing Data

Building a Set of Gluing Data

Let
$I=\left\{(\sigma, v) \mid \sigma\right.$ is a triangle of S_{T} and v is a vertex of $\left.\sigma\right\}$.

Building a Set of Gluing Data

Let
$I=\left\{(\sigma, v) \mid \sigma\right.$ is a triangle of S_{T} and v is a vertex of $\left.\sigma\right\}$.

Building a Set of Gluing Data

Building a Set of Gluing Data

For every vertex, v, of S_{T}, consider its star, $\operatorname{st}\left(v, S_{T}\right)$:

Building a Set of Gluing Data

For every vertex, v, of S_{T}, consider its star, $\operatorname{st}\left(v, S_{T}\right)$:

Building a Set of Gluing Data

Building a Set of Gluing Data

Define the \mathbf{P}-polygon, P_{v}, associated with v as the m_{v}-gon inscribed in the circle of radius 1 and centered at the origin in \mathbb{R}^{2} :

m_{v} is the degree of v in S_{T}.

Building a Set of Gluing Data

Building a Set of Gluing Data

Define the triangulation, T_{v}, associated with v by adding straight edges (diagonals) connecting the barycenter of P_{v} to its vertices:

Building a Set of Gluing Data

Define the triangulation, T_{v}, associated with v by adding straight edges (diagonals) connecting the barycenter of P_{v} to its vertices:

Building a Set of Gluing Data

Define the triangulation, T_{v}, associated with v by adding straight edges (diagonals) connecting the barycenter of P_{v} to its vertices:
\mathbb{R}^{2}

$$
T_{v}
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

Remark: T_{v} is a parametrization of $s t\left(v, S_{T}\right)$ in \mathbb{R}^{2} :

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

Remark: T_{v} is a parametrization of $\operatorname{st}\left(v, S_{T}\right)$ in \mathbb{R}^{2} :

$\operatorname{st}\left(v, S_{T}\right)$
\mathbb{R}^{2}

$$
s: \operatorname{st}\left(v, S_{T}\right) \rightarrow T_{v}
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

For each triangle σ of S_{T} and vertex v of σ, we define the overlapping point, $r_{v, \sigma}$, associated with $s(\sigma)$ in T_{v}, as follows:

Building a Set of Gluing Data

For each triangle σ of S_{T} and vertex v of σ, we define the overlapping point, $r_{v, \sigma}$, associated with $s(\sigma)$ in T_{v}, as follows:

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

For each triangle σ of S_{T} and vertex v of σ, we define the overlapping point, $r_{v, \sigma}$, associated with $s(\sigma)$ in T_{v}, as follows:

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

For each triangle σ of S_{T} and vertex v of σ, we define the overlapping point, $r_{v, \sigma}$, associated with $s(\sigma)$ in T_{v}, as follows:

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

For each triangle σ of S_{T} and vertex v of σ, we define the overlapping point, $r_{v, \sigma}$, associated with $s(\sigma)$ in T_{v}, as follows:

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

Building a Set of Gluing Data

If $\sigma=[v, u, w]$ then consider the triangle $\left[r_{\sigma, v}, s(u), s(w)\right]$:

Building a Set of Gluing Data

If $\sigma=[v, u, w]$ then consider the triangle $\left[r_{\sigma, v}, s(u), s(w)\right]$:

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

Building a Set of Gluing Data

Consider the circle, C_{v}, inscribed in P_{v} :

Building a Set of Gluing Data

Consider the circle, C_{v}, inscribed in P_{v} :

$s t\left(v, S_{T}\right)$

T_{v}

Building a Set of Gluing Data

Building a Set of Gluing Data

We let $\Omega_{(\sigma, v)}$ be

$$
C_{v} \cap \operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right)
$$

where $\operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right)$ is the interior of $\left[r_{v, \sigma}, s(u), s(w)\right]$.

Building a Set of Gluing Data

We let $\Omega_{(\sigma, v)}$ be

$$
C_{v} \cap \operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right),
$$

where $\operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right)$ is the interior of $\left[r_{v, \sigma}, s(u), s(w)\right]$.

Building a Set of Gluing Data

We let $\Omega_{(\sigma, v)}$ be

$$
C_{v} \cap \operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right)
$$

where $\operatorname{int}\left(\left[r_{v, \sigma}, s(u), s(w)\right]\right)$ is the interior of $\left[r_{v, \sigma}, s(u), s(w)\right]$.

Building a Set of Gluing Data

Remark:

From Jean Gallier's lecture, we should have

$$
\Omega_{(\sigma, v)} \cap \Omega_{(\tau, u)}=\emptyset,
$$

for any two pairs, (σ, v) and (τ, u), in I. Did I make it right?

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

T_{v}

Clearly, $\Omega_{(\sigma, v)} \cap \Omega_{(\tau, v)} \neq \emptyset$.

Building a Set of Gluing Data

Building a Set of Gluing Data

So, I did NOT make it right.

Building a Set of Gluing Data

So, I did NOT make it right.
What now?

Building a Set of Gluing Data

So, I did NOT make it right.
What now?
We can fix that by letting $\Omega_{(\sigma, v)}$ be a set inside a triangle which is the inverse image of $\left[r_{v, \sigma}, s(u), s(w)\right.$] under a rigid transformation!

Building a Set of Gluing Data

Building a Set of Gluing Data

Since I is a finite set and the "enclosing" triangles are compact, we can certainly separate each p-domain from the others in \mathbb{R}^{2}.

Building a Set of Gluing Data

Gluing domains

Building a Set of Gluing Data

Gluing domains

Building a Set of Gluing Data

Gluing domains

Building a Set of Gluing Data

Gluing domains

Building a Set of Gluing Data

Gluing domains

Building a Set of Gluing Data

Building a Set of Gluing Data

Let p be a point in the region $C_{u} \cap\left[s_{u}(u), s_{u}(x), s_{u}(w), s_{u}(y)\right]$.

Building a Set of Gluing Data

Let p be a point in the region $C_{u} \cap\left[s_{u}(u), s_{u}(x), s_{u}(w), s_{u}(y)\right]$.

Let (θ, r) be the polar coordinates of point p with respect to the local coordinate system of P_{u} (i.e., origin at $s_{u}(u)=$ $(0,0))$.

Building a Set of Gluing Data

Building a Set of Gluing Data

Let $g_{u}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$be the map

$$
g_{u}(p)=g_{u}((\theta, r))=\left(\frac{6}{m_{u}} \cdot \theta, \frac{\cos \left(\frac{\pi}{6}\right)}{\cos \left(\frac{\pi}{m_{u}}\right)} \cdot r\right)
$$

where m_{u} is the degree of u.

Building a Set of Gluing Data

Let $g_{u}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$be the map

$$
g_{u}(p)=g_{u}((\theta, r))=\left(\frac{6}{m_{u}} \cdot \theta, \frac{\cos \left(\frac{\pi}{6}\right)}{\cos \left(\frac{\pi}{m_{u}}\right)} \cdot r\right)
$$

where m_{u} is the degree of u.

Building a Set of Gluing Data

Building a Set of Gluing Data

Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the $\operatorname{map} h(p)=h((x, y))=(1-x,-y)$:

Building a Set of Gluing Data

Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map $h(p)=h((x, y))=(1-x,-y)$:

Building a Set of Gluing Data

Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map $h(p)=h((x, y))=(1-x,-y)$:

Building a Set of Gluing Data

Building a Set of Gluing Data

Finally, we define $g_{(u, w)}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$as

$$
g_{(u, w)}(p)=g_{(u, w)}((\theta, r))=g_{w}^{-1} \circ h \circ g_{u}((\theta, r)) .
$$

Building a Set of Gluing Data

Finally, we define $g_{(u, w)}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$as

$$
g_{(u, w)}(p)=g_{(u, w)}((\theta, r))=g_{w}^{-1} \circ h \circ g_{u}((\theta, r)) .
$$

Building a Set of Gluing Data

Finally, we define $g_{(u, w)}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$as

$$
g_{(u, w)}(p)=g_{(u, w)}((\theta, r))=g_{w}^{-1} \circ h \circ g_{u}((\theta, r)) .
$$

Building a Set of Gluing Data

Finally, we define $g_{(u, w)}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$as

$$
g_{(u, w)}(p)=g_{(u, w)}((\theta, r))=g_{w}^{-1} \circ h \circ g_{u}((\theta, r)) .
$$

Building a Set of Gluing Data

Finally, we define $g_{(u, w)}:[0,2 \pi) \times \mathbb{R}_{+} \rightarrow[0,2 \pi) \times \mathbb{R}_{+}$as

$$
g_{(u, w)}(p)=g_{(u, w)}((\theta, r))=g_{w}^{-1} \circ h \circ g_{u}((\theta, r)) .
$$

$g_{w}^{-1} \circ h \circ g_{u}(p)$

Building a Set of Gluing Data

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:

Building a Se of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$$
\operatorname{st}\left(u, S_{T}\right)
$$

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$\operatorname{st}\left(u, S_{T}\right)$

T_{u}

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$s t\left(u, S_{T}\right)$

T_{u}

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$s t\left(u, S_{T}\right)$

T_{u}

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$s t\left(u, S_{T}\right)$

T_{u}

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$s t\left(u, S_{T}\right)$

T_{u}

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$s t\left(u, S_{T}\right)$

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

Building a Set of Gluing Data

For any two $(\tau, u),(\eta, w) \in I$, we define $\Omega_{(\tau, u)(\eta, w)}$ as follows:
(1) $u=w$

$$
\Omega_{(\tau, u)(\eta, w)}=f_{(\tau, u)}^{-1}\left(f_{(\tau, u)}\left(\Omega_{\tau, u}\right) \cap f_{(\eta, w)}\left(\Omega_{\eta, w}\right)\right)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

(2) $u \neq w$ and w is a vertex of τ or u is a vertex of η

Building a Set of Gluing Data

(2) $u \neq w$ and w is a vertex of τ or u is a vertex of η
\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

(2) $u \neq w$ and w is a vertex of τ or u is a vertex of η

Building a Set of Gluing Data

(2) $u \neq w$ and w is a vertex of τ or u is a vertex of η

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$
\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$
\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

Building a Set of Gluing Data

\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

\mathbb{R}^{3}

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

\mathbb{R}^{3}

Building a Set of Gluing Data

\mathbb{R}^{3}

$$
s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

$g_{(w, u)}\left(f_{(\eta, w)}\left(\Omega_{(\eta, w)}\right)\right)$

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

$$
f_{(\tau, u)}\left(\Omega_{(\tau, u)}\right) \cap g_{(w, u)}\left(f_{(\eta, w)}\left(\Omega_{(\eta, w)}\right)\right)
$$

$g_{(w, u)}\left(f_{(\eta, w)}\left(\Omega_{(\eta, w)}\right)\right)$

Building a Set of Gluing Data

$$
\Omega_{(\tau, u)(\eta, w)}=f_{(\tau, u)}^{-1}\left(f_{(\tau, u)}\left(\Omega_{(\tau, u)}\right) \cap g_{(w, u)}\left(f_{(\eta, w)}\left(\Omega_{(\eta, w)}\right)\right)\right)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

(3) $u \neq w$ and w is not a vertex of τ nor u is a vertex of η

Building a Set of Gluing Data

(3) $u \neq w$ and w is not a vertex of τ nor u is a vertex of η

$$
\Omega_{(\tau, u)(\eta, w)}=\emptyset
$$

Building a Set of Gluing Data

(3) $u \neq w$ and w is not a vertex of τ nor u is a vertex of η

$$
\Omega_{(\tau, u)(\eta, w)}=\emptyset
$$

\mathbb{R}^{3}

$$
\operatorname{st}\left(u, S_{T}\right) \cup \operatorname{st}\left(w, S_{T}\right)
$$

Building a Set of Gluing Data

(3) $u \neq w$ and w is not a vertex of τ nor u is a vertex of η

$$
\Omega_{(\tau, u)(\eta, w)}=\emptyset
$$

\mathbb{R}^{3}

$$
\operatorname{st}\left(u, S_{T}\right) \cup \operatorname{st}\left(w, S_{T}\right)
$$

$s t\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)$

Building a Set of Gluing Data

Building a Set of Gluing Data

We can show that the above definition of gluing domain satisfies condition (2) of the definition of sets of gluing data we saw before:

Building a Set of Gluing Data

We can show that the above definition of gluing domain satisfies condition (2) of the definition of sets of gluing data we saw before:
(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$ and $\Omega_{j i} \neq \emptyset$ if and only if $\Omega_{i j} \neq \emptyset$.

Fitting Surfaces to Polygonal Meshes (Part II)

Marcelo Siqueira UFMS

Outline

- Building a Set of Gluing Data
- The User's Perspective
- Building Parametrizations
- Results
- Conclusions

Building a Set of Gluing Data

Building a Set of Gluing Data

Transition functions

Building a Set of Gluing Data

Transition functions

Let

$$
K=\left\{((\tau, u),(\eta, w)) \in I \times I \mid \Omega_{(\tau, u),(\eta, w)} \neq \emptyset\right\}
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

Building a Set of Gluing Data

(1) $u=w$

$$
f_{(\eta, w)}^{-1} \circ f_{(\tau, u)}(p)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

(2) otherwise

Building a Set of Gluing Data

(2) otherwise

Building a Set of Gluing Data

(2) otherwise

\mathbb{R}^{3}

$$
\operatorname{st}\left(u, S_{T}\right) \cup s t\left(w, S_{T}\right)
$$

Building a Set of Gluing Data

(2) otherwise

$$
\mathbb{R}^{3}
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

Building a Set of Gluing Data

$$
f_{(\eta, w)}^{-1} \circ g_{(u, w)} \circ f_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)(p)
$$

Building a Set of Gluing Data

Building a Set of Gluing Data

For every $((\tau, u),(\eta, w)) \in K$, we define

$$
\varphi_{(\eta, w)(\tau, u)}: \Omega_{(\tau, u),(\eta, w)} \rightarrow \varphi_{(\eta, w)(\tau, u)},
$$

the transition function from $\Omega_{(\tau, u)}$ to $\Omega_{(\eta, w)}$, to be

Building a Se of Gluing Data

For every $((\tau, u),(\eta, w)) \in K$, we define

$$
\varphi_{(\eta, w)(\tau, u)}: \Omega_{(\tau, u),(\eta, w)} \rightarrow \varphi_{(\eta, w)(\tau, u)},
$$

the transition function from $\Omega_{(\tau, u)}$ to $\Omega_{(\eta, w)}$, to be

$$
\varphi_{(\eta, w)(\tau, u)}(p)= \begin{cases}f_{(\eta, w)}^{-1} \circ f_{(\tau, u)}(p) & \text { if } u=w \\ f_{(\eta, w)}^{-1} \circ g_{(u, w)} \circ f_{(\tau, u)}(p) & \text { otherwise }\end{cases}
$$

for every $p \in \Omega_{(\tau, u)(\eta, w)}$.

Building a Set of Gluing Data

Building a Set of Gluing Data

We can show that the above definition of transition functions satisfies conditions (3)(a)-(c) of the definition of sets of gluing data:

Building a Se of Gluing Data

We can show that the above definition of transition functions satisfies conditions (3)(a)-(c) of the definition of sets of gluing data:
(a) $\varphi_{i i}=\operatorname{id}_{\Omega_{i}}$, for all $i \in I$,
(b) $\varphi_{i j}=\varphi_{j i}^{-1}$, for all $(i, j) \in K$, and
(c) for all i, j, and k, if $\Omega_{j i} \cap \Omega_{j k} \neq \emptyset$ then $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap\right.$ $\left.\Omega_{j k}\right) \subseteq \Omega_{i k}$ and $\varphi_{k i}(x)=\varphi_{k j} \circ \varphi_{j i}(x)$, for all $x \in$ $\varphi_{j i}^{-1}\left(\Omega_{j i} \cap \Omega_{j k}\right)$.

User's Perspective

User's Perspective

Let t be a triangle in S_{T} and p be any point in t :

User's Perspective

Let t be a triangle in S_{T} and p be any point in t :

User's Perspective

User's Perspective

Map p to an equilateral triangle in \mathbb{R}^{2}.

User's Perspective

Map p to an equilateral triangle in \mathbb{R}^{2}.

We can do that by using barycentric coordinates.

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

User's Perspective

T_{u}
$g_{v u}(z)$

User's Perspective

User's Perspective

User's Perspective

Building Parametrizations

Building Parametrizations

For each $(\sigma, v) \in I$, we define a weight function,

$$
\gamma_{(\sigma, v)}: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

which is the product of two C^{∞} curves (and therefore, C^{∞} too).

Building Parametrizations

For each $(\sigma, v) \in I$, we define a weight function,

$$
\gamma_{(\sigma, v)}: \mathbb{R}^{2} \rightarrow \mathbb{R},
$$

which is the product of two C^{∞} curves (and therefore, C^{∞} too).

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

For each $(\sigma, v) \in I$, we define a Bézier patch,

$$
\psi_{(\sigma, v)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

whose control points are defined in the "envelope" triangle of $\Omega_{(\sigma, v)}$.

Building Parametrizations

For each $(\sigma, v) \in I$, we define a Bézier patch,

$$
\psi_{(\sigma, v)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},
$$

whose control points are defined in the "envelope" triangle of $\Omega_{(\sigma, v)}$.

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Contribution of $\Omega_{(\sigma, v)}$:

$$
\gamma_{(\sigma, v)}(q) \cdot \psi_{(\sigma, v)}(q)
$$

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Contribution of $\Omega_{(\tau, v)}$:
$\gamma_{(\tau, v)}(\varphi(\tau, v)(\sigma, v)(q)) \cdot \psi_{(\tau, v)}(\varphi(\tau, v)(\sigma, v)(q))$

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

Building Parametrizations

For each $(\sigma, v) \in I$, we define a parametrization,

$$
\theta_{(\sigma, v)}: \Omega_{(\sigma, v)} \rightarrow \mathbb{R}^{3}
$$

such that for every $p \in \Omega_{(\sigma, v)}$,

$$
\theta_{(\sigma, v)}(p)=\sum_{(\tau, u) \in J(p)} \nu_{(\tau, u)}(p) \cdot \psi_{(\tau, u)}\left(\varphi_{(\tau, u)(\sigma, v)}(p)\right)
$$

where

Building Parametrizations

Building Parametrizations

$$
\nu_{(\tau, u)}(p)=\frac{\gamma_{(\tau, u)}\left(\varphi_{(\tau, u)(\sigma, v)}(p)\right)}{\sum_{(\eta, w) \in J(p)} \gamma_{(\eta, w)}\left(\varphi_{(\eta, w)(\sigma, v)}(p)\right)}
$$

and

$$
J(p)=\left\{(\eta, w) \in I \mid p \in \Omega_{(\sigma, v)(\eta, w)}\right\} .
$$

Building Parametrizations

Building Parametrizations

Parametrizations are consistent!

Building Parametrizations

Parametrizations are consistent!

Building Parametrizations

$\psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)$

Building Parametrizations

The control points of $\psi_{(\tau, u)}$ are the solutions of a least squares problem.

$$
\psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)
$$

Building Parametrizations

The control points of $\psi_{(\tau, u)}$ are the solutions of a least squares problem.

$\Omega_{(\tau, u)}$

$$
\psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)
$$

Building Parametrizations

The control points of $\psi_{(\tau, u)}$ are the solutions of a least squares problem.

$\Omega_{(\tau, u)}$

Sample points
$\psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)$

Building Parametrizations

The control points of $\psi_{(\tau, u)}$ are the solutions of a least squares problem.

$\Omega_{(\tau, u)}$

Sample points $\quad \psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)$
$\psi_{(\tau, u)}\left(\Omega_{(\tau, u)}\right)$

Building Parametrizations

Building Parametrizations

How can we find the sample points to start with?

Building Parametrizations

How can we find the sample points to start with?

Fit a "curved" surface, S^{\prime}, to S_{T} and then sample it!

Building Parametrizations

How can we find the sample points to start with?

Fit a "curved" surface, S^{\prime}, to S_{T} and then sample it!

Building Parametrizations

How can we find the sample points to start with?

Fit a "curved" surface, S^{\prime}, to S_{T} and then sample it!

Good choices:

- PN triangle surfaces
- Subdivision surfaces

Building Parametrizations

Building Parametrizations

Building Parametrizations

Sample points

Sample points

Results

Results

Mesh

Results

Mesh

PN triangle

Results

Mesh

PN triangle

PPS

Results

Results

Results

Results

Results

Results

Results

Results

PN triangle

Results

PN triangle

Results

Results

Mesh

Results

Mesh

PN triangle

Results

Mesh

PN triangle

PPS

Results

Results

Results

Results

Mesh

PN triangle

PPS

Results

Results

Mesh

Results

Results

Mesh

PN triangle

PPS

Results

Results

Mesh

Results

Mesh

PN triangle

Results

Mesh

PN triangle

PPS

Results

Results

Mesh

Results

Mesh

PN triangle

Results

Mesh

PN triangle

PPS

Conclusions

Conclusions

The image of our C^{k} parametric pseudo-surface is given by

$$
M=\bigcup_{(\sigma, v)} \theta_{(\sigma, v)}\left(\Omega_{(\sigma, v)}\right)
$$

Conclusions

The image of our C^{k} parametric pseudo-surface is given by

$$
M=\bigcup_{(\sigma, v)} \theta_{(\sigma, v)}\left(\Omega_{(\sigma, v)}\right)
$$

The map $\theta_{(\sigma, v)}$ is actually C^{∞}.

Conclusions

The image of our C^{k} parametric pseudo-surface is given by

$$
M=\bigcup_{(\sigma, v)} \theta_{(\sigma, v)}\left(\Omega_{(\sigma, v)}\right)
$$

The map $\theta_{(\sigma, v)}$ is actually C^{∞}.

There are $3 \times n_{t} p$-domains and Bézier patches in our construction, where n_{t} is the number of triangles of the input mesh, S_{T}.

Conclusions

Conclusions

Unfortunately, the map $\theta_{(\sigma, v)}$ is NOT polynomial.

Conclusions

Unfortunately, the map $\theta_{(\sigma, v)}$ is NOT polynomial.

OPEN PROBLEM: Can we make it polynomial?

Conclusions

Conclusions

Recall that

$$
\theta_{(\sigma, v)}(p)=\sum_{(\tau, u) \in J(p)} \nu_{(\tau, u)}(p) \cdot \psi_{(\tau, u)}\left(\varphi_{(\sigma, v)(\tau, u)}(p)\right),
$$

where

$$
\nu_{(\tau, u)}(p)=\frac{\gamma_{(\tau, u)}\left(\varphi_{(\tau, u)(\sigma, v)}(p)\right)}{\sum_{(\eta, w) \in J(p)} \gamma_{(\eta, w)}\left(\varphi_{(\eta, w)(\sigma, v)}(p)\right)}
$$

and

$$
J(p)=\left\{(\eta, w) \in I \mid p \in \Omega_{(\sigma, v)(\eta, w)}\right\}
$$

Conclusions

We can easily make $\gamma_{(\tau, u)}$ a C^{k} rational polynomial, for any finite k.

However, the difficult lies in making $\varphi_{(\tau, u)(\sigma, v)}$ (rational) polynomial!.

Conclusions

Conclusions

We can create a much simpler construction by letting the p domains be the inscribed circles of the P-polygons, as shown below:

Conclusions

We can create a much simpler construction by letting the p domains be the inscribed circles of the P -polygons, as shown below:

The transition maps do not change, but the shape functions do!

Conclusions

Conclusions

Why didn't we let the interior of the P -polygons be the p domains?

Conclusions

Why didn't we let the interior of the P -polygons be the p domains?

Simple answer: we failed to figure out the transition maps!

Conclusions

Conclusions

OPEN PROBLEM: Can you find a simple C^{∞} bijective map g satisfying $g_{v w}=g_{u w} \circ g_{v u}$ (this has to do with the cocycle condition)?

163

Conclusions

Conclusions

For a good survey on the existing constructions, see

- Cindy M. Grimm and Denis Zorin. Surface Modeling and Parametrization with Manifolds. In ACM SIGGRAPH 2006 Courses (SIGGRAPH'06), pages 1-81, New York, NY, USA, 2006. ACM Press.

Adaptive Manifold Fitting (Part I)

Luiz Velho
IMPA

Outline

- Fitting Surfaces to Very Large Meshes
- Multiresolution Operators
- Building Base Meshes by Simplification
- Adaptive Mesh Refinement
- Conclusions

Surface Fitting

- Very Large Meshes (10^{6} vertices)
- Challenging Problem!

Surface Fitting

- Very Large Meshes (10^{6} vertices)
- Challenging Problem!

Manifolds and Fitting

- Basic Setting
- Gluing Data proportional to Mesh Size
- Problem: Very Large Meshes
- Computationally Inefficient
- Do not Exploit Approximation Power
- Solution:
- Adaptation

Adaptive Fitting

- Optimization Formulation:
- Given an Approximation Error ϵ
- Find \mathcal{M} with Smallest Number of Charts
- Strategy:
- Combine
- Multiresolution Structure
- Manifold Surface Approximation

Multiresolution Framework

- Simplicial Multi-triangulation
- Stellar Theory
- Building Base Meshes
- Surface Simplification
- Adaptive Fitting
- 4-8 Refinement

Stellar Theory

- Topological Operators
- Edge Split and Weld
- Change Mesh Resolution

- Edge Flip
- Change Mesh Connectivity

Stellar Simplification

- Basic Elements:
I. Operator Factorization
- Edge Collapse \longrightarrow
- Flip + Weld

II. Quadric Error Metric

Basic Algorithm

- Repeat for N Resolution Levels
I. Rank Vertices Based on Quadric Error

2. Select Independent Set of Clusters
3. Simplify Mesh using Stellar Operators

* Properties
- Logarithmic Height
- Good Aspect Ratios

Example I: Plane

(a) original mesh

(d) level 5

(b) level 1

(e) level 7

(c) level 3

(f) level 9

Example 2: Cow

Variable Resolution Mesh

- Underlying Semi-Regular Structure
- Tri-quad Base Mesh

- 4-8 Subdivision

Building the Base Mesh

I. Two-Face Clusters + Single Triangles

2. Barycenter Subdivision

4-8 Subdivision

- Interleaved Binary Subdivision

- Non-Uniform Refinement

Binary Multi-Triangulation

Adaptive Refinement

Example I: Uniform

Example 2: Adaptive

- Application-Dependent Criteria

Spatial Selection

Curvature

Conclusions

- Simplicial Multiresolution
- Powerful Mechanism for Adaptation
- First Part of the Solution for Surface Fitting
- Simplification
- Adaptive Refinement
- Second Part (Next)
- Geodesic Parametrization
- Bezier Approximation

Adaptive Manifold Fitting (Part II)

Dimas Martínez Morera UFAL

Outline

- The Surface Fitting Problem
- Adaptive Fitting
- Discrete Geodesics
- Conclusions

The Surface Fitting Problem

The Surface Fitting Problem

We are a given a piecewise-linear surface, S_{T}, in \mathbb{R}^{3}, with an empty boundary, a positive integer k, and a positive number ϵ, \ldots

The Surface Fitting Problem

The Surface Fitting Problem

We want to find a C^{k} surface $S \subset \mathbb{R}^{3} \ldots$

The Surface Fitting Problem

The Surface Fitting Problem

such that there exists a homeomorphism, $h: S \rightarrow\left|S_{T}\right|$, satisfying

$$
\|h(v)-v\| \leq \epsilon,
$$

for every vertex v of S_{T}.

The Surface Fitting Problem

The Surface Fitting Problem

REMARK:

S_{T} is expected to be "very large" ($\sim 10^{6}$ vertices).

Adaptive Fitting

Adaptive Fitting

PIPELINE

Adaptive Fitting

PIPELINE

Adaptive Fitting

PIPELINE

Adaptive Fitting

PIPELINE

Adaptive Fitting

PIPELINE

Adaptive Fitting

$\tilde{S}_{T}=$ Simplify S_{T}
\downarrow
Embed \tilde{S}_{T} in $\left|S_{T}\right|$
Create S from \tilde{S}_{T}

PIPELINE

Adaptive Fitting

Adaptive Fitting

$S_{T} \rightarrow \quad \tilde{S}_{T}=$ Simplify S_{T}

Adaptive Fitting

$S_{T} \rightarrow \quad \tilde{S}_{T}=$ Simplify S_{T}

- Four-Face Clusters Algorithm

Adaptive Fitting

$$
S_{T} \rightarrow \tilde{S}_{T}=\text { Simplify } S_{T}
$$

- Four-Face Clusters Algorithm

Adaptive Fitting

$$
S_{T} \rightarrow \tilde{S}_{T}=\text { Simplify } S_{T}
$$

- Four-Face Clusters Algorithm

Adaptive Fitting

Adaptive Fitting

Embed \tilde{S}_{T} in $\left|S_{T}\right|$

Adaptive Fitting

Embed \tilde{S}_{T} in $\left|S_{T}\right|$

- Each edge of \tilde{S}_{T} is embedded in $\left|S_{T}\right|$ as a "geodesic".

Adaptive Fitting

Embed \tilde{S}_{T} in $\left|S_{T}\right|$

- Each edge of \tilde{S}_{T} is embedded in $\left|S_{T}\right|$ as a "geodesic".

Adaptive Fitting

Embed \tilde{S}_{T} in $\left|S_{T}\right|$

- Each edge of \tilde{S}_{T} is embedded in $\left|S_{T}\right|$ as a "geodesic".

Adaptive Fitting

Embed \tilde{S}_{T} in $\left|S_{T}\right|$

- Each edge of \tilde{S}_{T} is embedded in $\left|S_{T}\right|$ as a "geodesic".

Adaptive Fitting

Adaptive Fitting

REMARK:

The vertices of \tilde{S}_{T} ARE vertices of S_{T}.

Adaptive Fitting

REMARK:

The vertices of \tilde{S}_{T} ARE vertices of S_{T}.

Adaptive Fitting

Adaptive Fitting

PROBLEM:

When defining geodesic triangles, we can violate the manifold property of the geodesic mesh, as illustrated by the figure below:

Adaptive Fitting

PROBLEM:

When defining geodesic triangles, we can violate the manifold property of the geodesic mesh, as illustrated by the figure below:

Adaptive Fitting

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each vertex v of \tilde{S}_{T}, we consider the P-polygon, P_{v}, of v in \mathbb{R}^{2}, and the standard triangulation, T_{v}, of the P-polygon P_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each vertex v of \tilde{S}_{T}, we consider the P-polygon, P_{v}, of v in \mathbb{R}^{2}, and the standard triangulation, T_{v}, of the P-polygon P_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each vertex v of \tilde{S}_{T}, we consider the P-polygon, P_{v}, of v in \mathbb{R}^{2}, and the standard triangulation, T_{v}, of the P-polygon P_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- Consider the embedding of the star, $\operatorname{st}\left(v, \tilde{S}_{T}\right)$, of v in S_{T}.

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- Map the vertices of S_{T} bounded by the embedding of $\operatorname{st}\left(v, \tilde{S}_{T}\right)$ to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Map the vertices of S_{T} bounded by the embedding of $\operatorname{st}\left(v, \tilde{S}_{T}\right)$ to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Map the vertices of S_{T} bounded by the embedding of $s t\left(v, \tilde{S}_{T}\right)$ to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Map the vertices of S_{T} bounded by the embedding of $s t\left(v, \tilde{S}_{T}\right)$ to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Map the vertices of S_{T} bounded by the embedding of $s t\left(v, \tilde{S}_{T}\right)$ to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Points where geodesics intersect edges of S_{T} are also mapped to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Points where geodesics intersect edges of S_{T} are also mapped to T_{v}.

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- How is this mapping done?

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- We map the vertices in each "curved" triangle separately.

Adaptive Fitting

Create S from \tilde{S}_{T}

- We use Floater's parametrization to build the map for each "curved" triangle.

Adaptive Fitting

Create S from \tilde{S}_{T}

- We use Floater's parametrization to build the map for each "curved" triangle.

Adaptive Fitting

Create S from \tilde{S}_{T}

- We use Floater's parametrization to build the map for each "curved" triangle.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each triangle in $\operatorname{st}\left(v, \tilde{S}_{T}\right)$, compute the shape function $\psi_{(\sigma, v)}$.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each triangle in $\operatorname{st}\left(v, \tilde{S}_{T}\right)$, compute the shape function $\psi_{(\sigma, v)}$.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each triangle in $\operatorname{st}\left(v, \tilde{S}_{T}\right)$, compute the shape function $\psi_{(\sigma, v)}$.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each triangle in $s t\left(v, \tilde{S}_{T}\right)$, compute the shape function $\psi_{(\sigma, v)}$.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each triangle in $\operatorname{st}\left(v, \tilde{S}_{T}\right)$, compute the shape function $\psi_{(\sigma, v)}$.

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- Control points of $\psi_{(\sigma, v)}$ are computed by a least squares procedure.

Adaptive Fitting

Create S from \tilde{S}_{T}

- Control points of $\psi_{(\sigma, v)}$ are computed by a least squares procedure.
- But, this time, the sample points are the vertices of S_{T} that correspond to the points in T_{v} through Floater's parametrization!

Adaptive Fitting

Create S from \tilde{S}_{T}

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each point p in T_{v}, we compute the approximation error,

$$
\left\|q-\psi_{(\sigma, v)(p)}\right\|
$$

where q is the vertex of S_{T} corresponding to p through Floater's parametrization.

Adaptive Fitting

Create S from \tilde{S}_{T}

- For each point p in T_{v}, we compute the approximation error,

$$
\left\|q-\psi_{(\sigma, v)(p)}\right\|,
$$

where q is the vertex of S_{T} corresponding to p through Floater's parametrization.

- If the above error is smaller than the given number ϵ, we keep computing $\psi_{(\tau, u)}$, for all pairs $(\tau, u) \in I$. Otherwise, we stop this process and go to the refinement step.

Adaptive Fitting

Adaptive Fitting

Refine \tilde{S}_{T}

- We locally refine \tilde{S}_{T} using the stellar operations and the 4-8 refinement, and then embed the resulting \tilde{S}_{T} in $\left|S_{T}\right|$ again.

Discrete Geodesics

Discrete Geodesics

- Locally Shortest Geodesic:

A curve joining two points, A and B, on a polyhedral surface. It is a local minimum of the length functional.

Discrete Geodesics

- Locally Shortest Geodesic:

A curve joining two points, A and B, on a polyhedral surface. It is a local minimum of the length functional.

- Straighest Geodesic:

A curve beginning at point A and moving in the direction of the tangent vector. It has zero discrete geodesic curvature everywhere.

Discrete Geodesics

Discrete Geodesics

Locally shortest geodesics:

Discrete Geodesics

Locally shortest geodesics:

Exact algorithms:

- Mitchell, Mount, and Papadimitriou (1987)
- Chen and Han (1996)
- Kapoor (1999)
- Surazhsky, Surazhsky, Kirsanov, Gortler, and Hoppe (2005)

Discrete Geodesics

Locally shortest geodesics:

Discrete Geodesics

Locally shortest geodesics:

Approximate algorithms:

- Kimmel and Sethian (1998)
- Martínez, Velho, and Carvalho (2004)
- Surazhsky, Surazhsky, Kirsanov, Gortler, and Hoppe (2005)

Discrete Geodesics

Discrete Geodesics

A Two-Step Algorithm:

Discrete Geodesics

A Two-Step Algorithm:

Step 1:
Find an initial curve joining A and B.

Discrete Geodesics

A Two-Step Algorithm:

Discrete Geodesics

A Two-Step Algorithm:

Step 2:
Iteratively modify the position of each curve vertex.

Discrete Geodesics

Discrete Geodesics

Step 1:

Find an initial curve joining A and B.

Discrete Geodesics

Step 1:

Find an initial curve joining A and B.

- Fast Marching Method

Discrete Geodesics

Step 1:

Find an initial curve joining A and B.

- Fast Marching Method
- Define a distance function at the vertices, $d(v)=$ $\operatorname{dist}(A, V)$, using an approximation of the eikonal equation

$$
|\nabla d|=1 .
$$

Discrete Geodesics

Step 1:

Find an initial curve joining A and B.

Discrete Geodesics

Step 1:

Find an initial curve joining A and B.

- Back-integrate the differential equation:

$$
\left\{\begin{aligned}
\frac{d \Gamma_{0}}{d s}(s) & =-\nabla d\left(\Gamma_{0}(s)\right) \\
\Gamma_{0}(0) & =B
\end{aligned}\right.
$$

Discrete Geodesics

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

- Given a curve Γ_{i}, we want to get a shorter curve, Γ_{i+1}, with the same endpoints.

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

- Given a curve Γ_{i}, we want to get a shorter curve, Γ_{i+1}, with the same endpoints.
- a geodesic should be a line segment in the interior of a face;

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

- Given a curve Γ_{i}, we want to get a shorter curve, Γ_{i+1}, with the same endpoints.
- a geodesic should be a line segment in the interior of a face;
- the curve will be a polygonal with nodes belonging to the edges of the mesh;

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

- Given a curve Γ_{i}, we want to get a shorter curve, Γ_{i+1}, with the same endpoints.
- a geodesic should be a line segment in the interior of a face;
- the curve will be a polygonal with nodes belonging to the edges of the mesh;
- the algorithm will correct the position of the curve nodes;

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

- Given a curve Γ_{i}, we want to get a shorter curve, Γ_{i+1}, with the same endpoints.
- a geodesic should be a line segment in the interior of a face;
- the curve will be a polygonal with nodes belonging to the edges of the mesh;
- the algorithm will correct the position of the curve nodes;
- distinct behavior for "edge nodes" and "vertex nodes".

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.
Edges nodes:

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.

Discrete Geodesics

Step 2:

Iteratively modify the position of each curve vertex.
Vertex nodes:

Discrete Geodesics

Discrete Geodesics

Examples:

Discrete Geodesics

Examples:

Discrete Geodesics

Discrete Geodesics

Discrete Geodesics

Adaptive Fitting:

When defining geodesic triangles, we can violate the manifold property of the geodesic mesh, as illustrated by the figure below:

Discrete Geodesics

Discrete Geodesics

Solution:

Compute the geodesic curve $A B$ as the geodesic resulting from using the concatenation of geodesics $A C$ and $C B$ as initial approximation:

Discrete Geodesics

Solution:

Compute the geodesic curve $A B$ as the geodesic resulting from using the concatenation of geodesics $A C$ and $C B$ as initial approximation:

Discrete Geodesics

Solution:

Compute the geodesic curve $A B$ as the geodesic resulting from using the concatenation of geodesics $A C$ and $C B$ as initial approximation:

Conclusions

Conclusions

- Adaptive fitting pipeline is not new, but its elements are.

Conclusions

- Adaptive fitting pipeline is not new, but its elements are.
- This is the "real deal" when it comes to comparisons between smooth surfaces and very dense polygonal meshes.

Conclusions

- Adaptive fitting pipeline is not new, but its elements are.
- This is the "real deal" when it comes to comparisons between smooth surfaces and very dense polygonal meshes.
- Implementation of the adaptive fitting is still under development.

Conclusions

- Adaptive fitting pipeline is not new, but its elements are.
- This is the "real deal" when it comes to comparisons between smooth surfaces and very dense polygonal meshes.
- Implementation of the adaptive fitting is still under development.
- More specifically, the refinement step has not been completed.

Applications of Manifolds and
 Research Challenges

Luiz Velho
IMPA

Outline

- Concepts
- Illumination
- Appearance
- Simulation
- Faces
- Manifold Learning
- Wrap-up

Manifolds \& Parametrization

- Two Points of View
- Functions on surfaces
- Functions defining surfaces

Desirable Properties

- Minimal Distortion
- Angle
- Area

- Smoothness
- Differentiability
- Continuity

Graphical Objects

- Shape U
- Topology (domain)
- Abstract Manifold
- Geometry (function)
- Embedding
- Attributes f
- Functions (co-domain)

$$
O=(U, f)
$$

G.O. Manifold Setting

- Canonical Surfaces
- Fixed Shape (defined apriori)
- Variable Functions (complex)
- ex: Sphere
- Arbitrary Surfaces
- Complex Shape
- Computation on Surfaces (attributes)
- Building / Transforming (shape)
- ex: Triangle Meshes

Applications

- Illumination
- Canonical Manifold + Functions
- Appearance and Simulation
- Pseudo-Manifold + Attributes
- Faces
- Manifold + Geometric Deformation
- Surface Reconstruction
- Pseudo-Manifold / Topology Estimation

Illumination

- Functions on the Sphere
- Light Fields / BRDFs
- Applications
- Capture / Synthesis

- Construction [Grimm 2002]

Chart (squares), edge, and

Bottom cap

Omnidirectional Images

- Panoramic Cameras
- Processing

- Multi-Camera Assembly
- Stitching / Blending

Illumination Maps

- Environment Maps
- Area Sampling
- Light Maps
- Stratification

Surface Properties

- Texture Atlas
- Albedo
- Normal Field
- Building from Images
- Projective Map

Painting

- Color
- Normals

Texture Synthesis

- Stationary / Quasi Stationary

Simulation

- Solving Equations on Manifolds
- Surface Points
- Local Neighborhoods

Fluids

- Vector Fields on Surfaces

Faces

- Geometry + Appearance

[G. Borshukov et al SIGGRAPH 2003]

Facial Expressions

- Deformations

Manifold Learning

- Estimate from Data Samples
- Topology
- Geometry

Surfaces

- Point Sets

N-Dimensional Case

- ex: Facial Expressions

Challenges

- Multi-Resolution
- Hierarchical Atlas
- Dynamic Setting
- API
- Intuitive
- General

Questions ?

