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such that there exists a homeomorphism, h : S → |ST |, satis-
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‖h(v) − v‖ ≤ ε ,

for every vertex v of ST .
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Topological and geometric guarantees!
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From now on, we will refer to ST as a polygonal mesh.
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• It is a well-known and fundamental problem in CAGD.

• Reasonably well-solved for k = 1, 2, but not higher.

• Higher values of k are desirable in many applications.
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and

• stitch the patches together along their common edges

and vertices.
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SST

and

• stitch the patches together along their common edges

and vertices.

Continuity is enforced by control point placement!
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There are several drawbacks with this approach:

• The degree d of the patches depends on k and grows

rapidly with it.
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• The larger d is, the larger the number of control points

and the more difficult the problem of control point place-

ment.

• Local control of geometry is not very flexible.

[Loop and DeRose, 1989], [Seidel, 1994], [Prautzsch, 1997],
and [Reif, 1998] give Ck parametric approaches for arbitrary
k.
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Another popular approach consists of using subdivision sur-

faces.
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solution for the problem whenever the smoothness degree,

k, is not large.

For large values of k, the few existing schemes are rather com-

plex.

See [Warren, 2002].
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Implicit surfaces can also be used to solve the problem.

They can naturally define C∞ surfaces.

In general, the fitting problem is made into an interpolation

problem.

Then, one can use RBF, MPU, moving least squares, etc.
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The main drawback of this implict surface-based approach is

that the topological condition becomes a lot harder to satisfy.

More recent results might overcome this difficulty.

See [Shen, O’Brien, and Shewchuk, 2004] and [Kolluri, 2005].

Implicit and parametric surfaces have complementary features.
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An often neglected approach, the manifold-based one, has
the potential to easily produce Ck surfaces, for an arbitrary k

(including k = ∞).
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An often neglected approach, the manifold-based one, has
the potential to easily produce Ck surfaces, for an arbitrary k

(including k = ∞).

The manifold approach has also some advantages over the

traditional approaches when it comes to certain applications,

such as texture synthesis and the solution of equations on

surfaces.
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• point out some applications and research challenges in

Computer Graphics, Image Processing, and Computer

Vision that can be more naturally tackled by using man-

ifolds.

• describe the manifold-based approach for the surface fit-

ting problem,
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and
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Manifolds

Jean Gallier
UPenn
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• Manifolds: Brief History 

• Informal definition

• Formal definition
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- The Sphere

- Real Projective Space

• Conclusions
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Origins of Manifolds
• Around 1860, Mobius, Jordan, and Dyck studied the

topology of surfaces.

• In the early 1900’s, Dehn, Heegaard, Veblen and Alexan-

der routinely used the term manifold.

• In a famous paper published in 1888, Dyck already uses
the term manifold (in German).

• Hermann Weyl was among the first to give a rigorous
definition (1913).
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Hermann Weyl (again)

Keys Contributors to the notion of 
manifold:
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Hermann Weyl (again)

Hassler Whitney

1907-1989

Keys Contributors to the notion of 
manifold:
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• We also want to be able “to do calculus” on our mani-

folds. For this we need some conditions on overlaps of

open sets.
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• Whenever Ui ∩ Uj "= ∅, we need some condition on the

transition function,

ϕji = ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) .
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ϕj(Uj)
ϕj

ϕi

ϕi(Ui ∩ Uj)

ϕj(Ui ∩ Uj)

ϕji

• This is a map between two open subsets of Rn and we

require it possess a certain amount of smoothness.
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topological space

ϕ : U → Ω

homeomorphism

open sets
Ω = ϕ(U) ⊂ R

nϕ

U

(U, ϕ) is called a chart.
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U2

ϕ1

ϕ2

Ω1 Ω2

R
n

ϕ21 = ϕ2 ◦ ϕ
−1

1

ϕ12 = ϕ1 ◦ ϕ
−1

2

ϕ21 and ϕ12 are the transition functions.
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I is a non-empty countable set, and such that the following
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A Ck n-atlas is a family of charts, {(Ui, ϕi)}(i∈I), where

I is a non-empty countable set, and such that the following

conditions hold:

(1) ϕi(Ui) ⊆ Rn, for all i.

(2) M =

⋃

i∈I

Ui.

(3) Whenever Ui∩Uj "= ∅, the transition function ϕji (resp.

ϕij) is a Ck diffeomorphism.
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The existence of a Ck atlas on a topological space, M , is

sufficient to establish that M is an n-dimensional Ck manifold,

but...

• there may be many choice of atlases;

• this notion induces an equivalence relation of atlases on

M ;

• we get around this problem by defining a notion of atlas

compatibility;

• the set of all charts compatible with a given atlas is a

maximum atlas in its class.

44



Manifolds: Formal Definition

45



Manifolds: Formal Definition
To avoid pathological cases and to ensure that a manifold is

always embeddable in Rn, for some n ≥ 1, we further re-

quire that the topology of M be Hausdorff and second-

countable.
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Examples
• The sphere

Sn−1 = {(x1, . . . , xn) ∈ R
n | x2

1 + · · · + x2

n
= 1} .

S2

R3
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p
σN (p)

Examples

σN (x1, . . . , xn+1) =
1

1 − xn+1

(x1, . . . , xn)
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and from the south pole:

σS(x1, . . . , xn+1) =
1

1 + xn+1
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• Inverse stereographic projections:

σ
−1

N
(x1, . . . , xn) =

1
(
∑n

i=1
x2

i

)

+ 1

(

2x1, . . . , 2xn,

( n
∑

i=1

x
2

i

)

− 1
)

and

σ
−1

S
(x1, . . . , xn) =

1
(
∑n

i=1
x2

i

)

+ 1

(

2x1, . . . , 2xn,−

( n
∑

i=1

x
2

i

)

+ 1
)

.
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• Consider the open cover consisting of

UN = S
n − {N} and US = S

n − {S} .

Out!N

UN

Out!

US
S
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• On the overlap,

UN ∩ US = Sn − {N, S} .
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• On the overlap,

UN ∩ US = Sn − {N, S} .

N

S
UN ∩ US

Out!
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Examples
• The transition maps

σS ◦ σ
−1

N
= σN ◦ σ

−1

S

are given by

(x1, . . . , xn) "→
1

∑n

i=1
x2

i

(x1, . . . , xn) .
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• Consequently,

(UN , σN ) and (US , σS)

form a smooth atlas for Sn .
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Examples
• Consequently,

(UN , σN ) and (US , σS)

form a smooth atlas for Sn .

• So, the sphere is a smooth manifold.
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• The real projective space, RPn.
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u ∼ v iff v = λu, for some λ "= 0 ∈ R .
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• Equivalent definition:

Define an equivalence relation on nonzero vector in

Rn+1 as follows:

u ∼ v iff v = λu, for some λ "= 0 ∈ R .

• Denote the equivalence class of (x1, . . . , xn+1) by

(x1 : · · · : xn+1)

also called homogeneous coordinates.
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• Let

Ui = {(x1 : · · · : xn+1) ∈ RP
n | xi "= 0} .
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U1 = {(x : y : z) ∈ RP2 | x "= 0}

Out!
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• Define ϕi : Ui → Rn by

ϕi(x1 : · · · : xn+1) =

(

x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn+1

xi

)

.
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.
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y
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ϕ2(p) = ϕ2(x : y : z)

Out!
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• Define ϕi : Ui → Rn by

ϕi(x1 : · · · : xn+1) =

(

x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn+1

xi

)

.

RP2

x

y

z

ϕ2(x : y : z)

p = (x : y : z)

ϕ2(p) = ϕ2(x : y : z)

Out!

y = 1
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• The inverse maps are given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi+1 : · · · : xn) .
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• The inverse maps are given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi+1 : · · · : xn) .

(ϕj ◦ ϕ
−1
i )(x1, . . . , xn) =

(

x1

xj

, . . . ,
xi−1

xj

,
1

xj

,
xi

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

)

• On the overlap, Ui ∩ Uj ,
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Examples
• The inverse maps are given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi+1 : · · · : xn) .

(ϕj ◦ ϕ
−1
i )(x1, . . . , xn) =

(

x1

xj

, . . . ,
xi−1

xj

,
1

xj

,
xi

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

)

• On the overlap, Ui ∩ Uj ,

• As these maps are smooth, real projective space is a

smooth manifold.
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Conclusions
• In the next part of the tutorial, we will show that a mani-

fold can be reconstructed from its transition functions.

• Such a construction was first proposed by Andre Weil

around 1944 in his book, Foundations of Algebraic Ge-

ometry.

• A similar approach was used to construct fiber bundles
in the 1950’s (Steenrod).
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• Transition functions
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imates the underlying surface, |ST |, of a given polygonal
surface (mesh), ST .
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manifold in R3.
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Motivations
• Recall that we want to define a surface S that approx-

imates the underlying surface, |ST |, of a given polygonal
surface (mesh), ST .

• More specifically, we want to build a Ck two-dimensional

manifold in R3.

• Our plan is to define S constructively by building a

manifold.
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Motivations
A LITTLE PROBLEM:

Our definition of manifold is not constructive: it states what a

manifold is by assuming it already exists! So, for our purposes,

it is not useful!
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Motivations
A LITTLE PROBLEM:

Our definition of manifold is not constructive: it states what a

manifold is by assuming it already exists! So, for our purposes,

it is not useful!

THE KEY IDEA:

The notion of a set of gluing data.
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Sets of Gluing Data
Let n and k be integers such that n ≥ 1 and k ≥ 1 (or
k = ∞).
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Sets of Gluing Data
Let n and k be integers such that n ≥ 1 and k ≥ 1 (or
k = ∞).

A set of gluing data is a triple

G =
(

(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K×K

)

satisfying the following properties, where I and K are count-

able sets and I is non-empty:
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Sets of Gluing Data
(1) For every i ∈ I, the set Ωi is a non-empty open subset

of Rn called parametrization domain, for short, p-

domain, and the Ωi are pairwise disjoint (i.e., Ωi∩Ωj =

∅ for all i $= j).
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Sets of Gluing Data
(1) For every i ∈ I, the set Ωi is a non-empty open subset

of Rn called parametrization domain, for short, p-

domain, and the Ωi are pairwise disjoint (i.e., Ωi∩Ωj =

∅ for all i $= j).

· · ·

.

.

.

Ω1

Ω2 Ω3

Ωi

Rn
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Sets of Gluing Data
(2) For every pair (i, j) ∈ I × I, the set Ωij is an open

subset of Ωi. Furthermore, Ωii = Ωi, and Ωji #= ∅ if
and only if Ωij #= ∅. Each non-empty Ωij (with i #= j)
is called gluing domain.
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Sets of Gluing Data
(2) For every pair (i, j) ∈ I × I, the set Ωij is an open

subset of Ωi. Furthermore, Ωii = Ωi, and Ωji #= ∅ if
and only if Ωij #= ∅. Each non-empty Ωij (with i #= j)
is called gluing domain.

· · ·

.

.

.

Ω1

Ω2 Ω3

Ωi

Rn

Ω21

Ω12

Ω31

Ω13
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Sets of Gluing Data
(3) If we let

K = {(i, j) ∈ I × I | Ωij #= ∅} ,

then
ϕji : Ωij −→ Ωji

is a Ck bijection for every (i, j) ∈ K, called a transition

function or gluing function.
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The transition functions must satisfy the following conditions:

(a) ϕii = idΩi
, for all i ∈ I,

Ωi
ϕii = idΩi

Transition Functions
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(b) ϕij = ϕ−1

ji , for all (i, j) ∈ K, and

Transition Functions
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(c) for all i, j, and k, if Ωji ∩ Ωjk "= ∅ then ϕ−1

ji (Ωji ∩

Ωjk) ⊆ Ωik and ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈

ϕ−1

ji (Ωji ∩ Ωjk).
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The Cocycle Condition
The “evil” cocycle condition

ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈ ϕ
−1

ji (Ωji ∩ Ωjk).
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The Cocycle Condition
The “evil” cocycle condition

ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈ ϕ
−1

ji (Ωji ∩ Ωjk).

Ωk

ΩiΩj

ϕji

x

ΩijΩji

Ωjk

Ωkj

ϕkj
Ωik

Ωki

ϕki = ϕkj ◦ ϕji
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• The cocycle condition implies conditions (a) and (b).

The Cocycle Condition
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• The cocycle condition implies conditions (a) and (b).

• Previous versions found in the literature are often incor-

rect.

The Cocycle Condition
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tions!
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• This is because the transition maps are only partial func-

tions!

ϕ
−1

ji

Ωj Ωi

Ωjk

Ωji

ϕ
−1

ji (Ωji ∩ Ωjk)

Ωik

Ωji ∩ Ωjk
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Parametric Pseudo-Manifolds
• The question now becomes:

Given a set of gluing data, G, can we build a manifold from

it?

• Indeed, such a manifold is built by a quotient construc-

tion.

• We form the disjoint union of the Ωi and we identify

Ωij with Ωji using ϕji, an equivalence relation, ∼. We

form the quotient

MG =

(

∐

i

Ωi

)

/ ∼, .

77



Parametric Pseudo-Manifolds

78



Theorem 1 [Gallier, Siqueira, and Xu, 2008]

For every set of gluing data,

G =
(

(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K×K

)

,

there is an n-dimensional Ck manifold, MG , whose transition

functions are the ϕji’s.

Parametric Pseudo-Manifolds
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REMARK:

A condition on the gluing data is needed to make sure that

MG is Hausdorff. Since it is quite technical, we will not show

it here.

Parametric Pseudo-Manifolds
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• Our proof is not constructive;

• MG is an abstract entity, which may not even be com-

pact, orientable, etc.

So, the question that remains is how to build a concrete man-

ifold.
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Theorem 1 is very nice, but . . .

• Our proof is not constructive;

• MG is an abstract entity, which may not even be com-

pact, orientable, etc.

So, the question that remains is how to build a concrete man-

ifold.

Let us first formalize our notion of “concreteness”.

Parametric Pseudo-Manifolds
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Parametric Pseudo-Manifolds
Let n, m, and k be integers, with m > n ≥ 1 and k ≥ 1 or

k = ∞.
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Parametric Pseudo-Manifolds
Let n, m, and k be integers, with m > n ≥ 1 and k ≥ 1 or

k = ∞.

A parametric Ck pseudo-manifold of dimension n in Rm

is a pair,

M = (G, (θi)i∈I) ,

such that G =
(

(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕij)(i,j)∈K×K

)

is a

set of gluing data, for some finite I, and each θi is a Ck

function, θi : Ωi → Rm, called a parametrization such that

the following holds:
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Parametric Pseudo-Manifolds

Ω2

R
n

Ω1

θ2

θ1

Ω12

Ω21

ϕ12

ϕ21

R
m
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Parametric Pseudo-Manifolds

Ω2

R
n

Ω1

θ2

θ1

Ω12

Ω21

ϕ12

ϕ21

R
m

• When m = 3 and n = 2, we say that M is a parametric

pseudo-surface.
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Parametric Pseudo-Manifolds
(C) For all (i, j) ∈ K, we have θi = θj ◦ ϕji.
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Parametric Pseudo-Manifolds
(C) For all (i, j) ∈ K, we have θi = θj ◦ ϕji.

Ω2

R
n

Ω1

θ2θ1

Ω21

ϕ12

ϕ21

Ω12

R
m

p

θi(p) θj ◦ ϕ21(p)
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Parametric Pseudo-Manifolds
• The subset

M =
⋃

i∈I

θi(Ωi)

of Rm is called the image of the parametric pseudo-

manifold.
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Parametric Pseudo-Manifolds

M ⊆ R
m

Ω2

R
n

Ω1

θ2

θ1

Ω12

Ω21

ϕ12

ϕ21
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Parametric Pseudo-Manifolds
REMARK:

There is a (unique) surjective map:

Θ : MG −→ M .
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Parametric Pseudo-Manifolds
We proved that M can be given a manifold structure if we

require the θi’s to be bijective and to satisfy the following
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(C’) For all (i, j) ∈ K,
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Conclusions
• We can build a parametric pseudo-manifold (PPM) from

a set of gluing data and, under certain conditions, the
image of a PPM can be given the structure of a mani-
fold.

• In the following lecture, we describe a new constructive

approach to define a set of gluing data from a triangle

mesh.

• We also describe how to build a parametric C∞ pseudo-

surface from the set of gluing data. The image of this

parametric pseudo-surface approximates the vertices of

the mesh.
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• The Surface Fitting Problem

• Building a Set of Gluing Data
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Given a mesh ST in R3, a positive integer k, and a positive

real number ε, our goal here is to fit a Ck surface, S, in R3

to ST .

The Manifold-Based Approach:

We solve the fitting problem by defining a Ck parametric

pseudo-surface, M, such that S is the image, M , of M in

R3.
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Key Idea:

• Use ST to define the set of gluing data, G, of M.

• Use |ST | to define the set of parametrizations, (θi)i∈I ,

of M.

TOPOLOGY

GEOMETRY
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• define the p-domains, (Ωi)i∈I ,

• define the transition functions, (ϕi,j)(i,j)∈K×K .

G =
(

(Ω)i∈I , (Ωi,j)(i,j)∈I×I , (ϕi,j)(i,j)∈K×K

)

• define the gluing domains, (Ωij)(i,j)∈I×I ,
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Building a Set of Gluing Data
The BIG PICTURE

M ⊆ R
m

Ω2

R
n

Ω1

θ2

θ1

ϕ12

ϕ21

Ω12

Ω21
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p-Domains

Assume that ST is a triangle mesh (i.e., a simplicial surface).
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Let

I = {(σ, v) | σ is a triangle of ST and v is a vertex of σ} .
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For every vertex, v, of ST , consider its star, st(v, ST ):

R3

ST

v

Building a Set of Gluing Data

97



For every vertex, v, of ST , consider its star, st(v, ST ):

R3

ST

v

v
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Define the P-polygon, Pv, associated with v as the mv-gon

inscribed in the circle of radius 1 and centered at the origin in

R2:

R2

x

y

(1, 0)(0, 0)

Pv

mv is the degree of v in ST .
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Define the triangulation, Tv, associated with v by adding
straight edges (diagonals) connecting the barycenter of Pv to
its vertices:
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R2

x

y

(1, 0)

Pv

(0, 0)
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Remark: Tv is a parametrization of st(v, ST ) in R2:

Tv

R2

v

st(v, ST )

R3
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Remark: Tv is a parametrization of st(v, ST ) in R2:

Tv

R2

v

st(v, ST )

R3

s : st(v, ST ) → Tv

s(v)
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For each triangle σ of ST and vertex v of σ, we define the

overlapping point, rv,σ, associated with s(σ) in Tv, as fol-

lows:
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Tv

s(v)

s(σ)

v

st(v, ST )

R3

σ

For each triangle σ of ST and vertex v of σ, we define the

overlapping point, rv,σ, associated with s(σ) in Tv, as fol-

lows:

rv,σ

αv <
1

2
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If σ = [v, u, w] then consider the triangle [rσ,v, s(u), s(w)]:
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Tv

s(σ)

rv,σ
s(v)

s(u)

s(w)

v

st(v, ST )

R3

σ

u

w

If σ = [v, u, w] then consider the triangle [rσ,v, s(u), s(w)]:
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Consider the circle, Cv, inscribed in Pv:
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Consider the circle, Cv, inscribed in Pv:

v

st(v, ST )

R3

σ

u

w

Tv

s(σ)

rv,σ s(v)
s(u)

s(w)
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We let Ω(σ,v) be

Cv ∩ int([rv,σ, s(u), s(w)]) ,

where int([rv,σ, s(u), s(w)]) is the interior of [rv,σ, s(u), s(w)].
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s(σ)

rv,σ s(v)
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We let Ω(σ,v) be

Cv ∩ int([rv,σ, s(u), s(w)]) ,

where int([rv,σ, s(u), s(w)]) is the interior of [rv,σ, s(u), s(w)].

s(σ)

rv,σ s(v)
s(u)

s(w)

Ω(σ,v)
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Remark:

From Jean Gallier’s lecture, we should have

Ω(σ,v) ∩ Ω(τ,u) = ∅ ,

for any two pairs, (σ, v) and (τ, u), in I. Did I make it right?
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v

st(v, ST )

R3

σ

u

w

τ

z

Tv

s(σ)

rv,σ s(v)
s(u)

s(w)

s(z)

rv,τ
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Clearly, Ω(σ,v) ∩ Ω(τ,v) "= ∅.

v

st(v, ST )

R3

σ

u

w

τ

z

Tv

s(σ)

rv,σ s(v)
s(u)

s(w)

s(z)

rv,τ
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So, I did NOT make it right.
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What now?

So, I did NOT make it right.
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What now?

rv,σ
s(v)

s(u)

s(w)

s(σ)

Ω(σ,v)

f(σ,v)(Ω(σ,v))

So, I did NOT make it right.

We can fix that by letting Ω(σ,v) be a set inside a triangle

which is the inverse image of [rv,σ, s(u), s(w)] under a rigid

transformation!
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Since I is a finite set and the “enclosing” triangles are com-

pact, we can certainly separate each p-domain from the others

in R2.
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Gluing domains
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Gluing domains

R3

ST

u

w

x

y
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Gluing domains

su(u)

su(x)

su(w)

su(y)

Tu

R2

R3

ST

u

w

x

y

su : st(u, ST ) → Tu
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Gluing domains

su(u)

su(x)

su(w)

su(y)

Tu

R2

R3

ST

u

w

x

y

su : st(u, ST ) → Tu

sw(x)

sw(y)
Tw

R2

rv,σ

sw(u)
sw(w)

sw : st(w, ST ) → Tw
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Gluing domains

su(u)

su(x)

su(w)

su(y)

Tu

R2

R3

ST

u

w

x

y

su : st(u, ST ) → Tu

sw(x)

sw(y)
Tw

R2

rv,σ

sw(u)
sw(w)

sw : st(w, ST ) → Tw

g(u,w) and g(w,u)
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Let p be a point in the region Cu∩[su(u), su(x), su(w), su(y)].

su(u)

su(x)

su(w)

su(y)

Tu

R2

p
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Let p be a point in the region Cu∩[su(u), su(x), su(w), su(y)].

Let (θ, r) be the polar coordinates of point p with respect
to the local coordinate system of Pu (i.e., origin at su(u) =
(0, 0)).

su(u)

su(x)

su(w)

su(y)

Tu

R2

p
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su(u)

su(x)

su(w)

su(y)

Tu

R2

p

Let gu : [0, 2π) × R+ → [0, 2π) × R+ be the map

gu(p) = gu((θ, r)) =

(

6

mu

· θ ,
cos(π

6
)

cos( π

mu

)
· r

)

,

where mu is the degree of u.
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6
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)
· r

)

,

where mu is the degree of u.

Building a Set of Gluing Data

111



Building a Set of Gluing Data

112



Let h : R2
→ R2 be the map h(p) = h((x, y)) = (1− x,−y):
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Let h : R2
→ R2 be the map h(p) = h((x, y)) = (1− x,−y):

x

(0, 0) (1, 0)

y

p
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Let h : R2
→ R2 be the map h(p) = h((x, y)) = (1− x,−y):

x

(0, 0) (1, 0)

y

p

(0, 0) (1, 0)

x

y

h(p)
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Finally, we define g(u,w) : [0, 2π) × R+ → [0, 2π) × R+ as

g(u,w)(p) = g(u,w)((θ, r)) = g−1
w

◦ h ◦ gu((θ, r)) .
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For any two (τ, u), (η, w) ∈ I, we define Ω(τ,u)(η,w) as follows:
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η
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(2) u != w and w is a vertex of τ or u is a vertex of η
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We can show that the above definition of gluing domain sat-
isfies condition (2) of the definition of sets of gluing data we
saw before:
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We can show that the above definition of gluing domain sat-
isfies condition (2) of the definition of sets of gluing data we
saw before:

(2) For every pair (i, j) ∈ I × I, the set Ωij is an open
subset of Ωi. Furthermore, Ωii = Ωi and Ωji #= ∅ if and
only if Ωij #= ∅.
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Transition functions

Let

K = {((τ, u), (η, w)) ∈ I × I | Ω(τ,u),(η,w) #= ∅} .
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(2) otherwise
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For every ((τ, u), (η, w)) ∈ K, we define

ϕ(η,w)(τ,u) : Ω(τ,u),(η,w) → ϕ(η,w)(τ,u) ,

the transition function from Ω(τ,u) to Ω(η,w), to be
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ϕ(η,w)(τ,u)(p) =











f−1
(η,w) ◦ f(τ,u)(p) if u = w

f−1
(η,w) ◦ g(u,w) ◦ f(τ,u)(p) otherwise ,

for every p ∈ Ω(τ,u)(η,w).

For every ((τ, u), (η, w)) ∈ K, we define
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the transition function from Ω(τ,u) to Ω(η,w), to be
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We can show that the above definition of transition functions
satisfies conditions (3)(a)-(c) of the definition of sets of gluing
data:
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We can show that the above definition of transition functions
satisfies conditions (3)(a)-(c) of the definition of sets of gluing
data:

(a) ϕii = idΩi
, for all i ∈ I,

(b) ϕij = ϕ−1

ji , for all (i, j) ∈ K, and

(c) for all i, j, and k, if Ωji ∩ Ωjk #= ∅ then ϕ−1

ji (Ωji ∩

Ωjk) ⊆ Ωik and ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈

ϕ−1

ji (Ωji ∩ Ωjk).
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Let t be a triangle in ST and p be any point in t:
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Map p to an equilateral triangle in R2.
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Map p to an equilateral triangle in R2.

We can do that by using barycentric coordinates.
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For each (σ, v) ∈ I, we define a weight function,

γ(σ,v) : R
2
→ R ,

which is the product of two C∞ curves (and therefore, C∞

too).
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For each (σ, v) ∈ I, we define a Bézier patch,

ψ(σ,v) : R
2
→ R

3 ,

whose control points are defined in the “envelope” triangle of

Ω(σ,v).
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For each (σ, v) ∈ I, we define a parametrization,

θ(σ,v) : Ω(σ,v) → R
3 ,

such that for every p ∈ Ω(σ,v),

θ(σ,v)(p) =
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where
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ν(τ,u)(p) =
γ(τ,u)(ϕ(τ,u)(σ,v)(p))

∑

(η,w)∈J(p)

γ(η,w)(ϕ(η,w)(σ,v)(p))

and

J(p) = {(η, w) ∈ I | p ∈ Ω(σ,v)(η,w)} .
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Parametrizations are consistent!
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The control points of ψ(τ,u) are the solutions of a least squares

problem.
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How can we find the sample points to start with?

Fit a “curved” surface, S′, to ST and then sample it!

τ

S′

Good choices:

• PN triangle surfaces

• Subdivision surfaces
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The image of our Ck parametric pseudo-surface is given by

M =
⋃

(σ,v)

θ(σ,v)(Ω(σ,v)) .
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The image of our Ck parametric pseudo-surface is given by

M =
⋃

(σ,v)

θ(σ,v)(Ω(σ,v)) .

The map θ(σ,v) is actually C∞.

There are 3 × nt p-domains and Bézier patches in our con-

struction, where nt is the number of triangles of the input

mesh, ST .
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Unfortunately, the map θ(σ,v) is NOT polynomial.

Conclusions

158



Unfortunately, the map θ(σ,v) is NOT polynomial.

OPEN PROBLEM: Can we make it polynomial?

Conclusions

158



Conclusions

159



Recall that

θ(σ,v)(p) =
∑

(τ,u)∈J(p)

ν(τ,u)(p) · ψ(τ,u)(ϕ(σ,v)(τ,u)(p)) ,

where

ν(τ,u)(p) =
γ(τ,u)(ϕ(τ,u)(σ,v)(p))

∑

(η,w)∈J(p)

γ(η,w)(ϕ(η,w)(σ,v)(p))

and

J(p) = {(η, w) ∈ I | p ∈ Ω(σ,v)(η,w)} .
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We can easily make γ(τ,u) a Ck rational polynomial, for any

finite k.

However, the difficult lies in making ϕ(τ,u)(σ,v) (rational) poly-
nomial!.
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We can create a much simpler construction by letting the p-

domains be the inscribed circles of the P-polygons, as shown

below:
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We can create a much simpler construction by letting the p-

domains be the inscribed circles of the P-polygons, as shown

below:

The transition maps do not change, but the shape functions

do!
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Why didn’t we let the interior of the P-polygons be the p-

domains?
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Why didn’t we let the interior of the P-polygons be the p-

domains?

Simple answer: we failed to figure out the transition maps!
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OPEN PROBLEM: Can you find a simple C∞ bijective map
g satisfying gvw = guw ◦ gvu (this has to do with the cocycle
condition)?

gvu

guw

gvw

Tv

TuTw

Conclusions
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For a good survey on the existing constructions, see

• Cindy M. Grimm and Denis Zorin. Surface Modeling and
Parametrization with Manifolds. In ACM SIGGRAPH
2006 Courses (SIGGRAPH’06), pages 1-81, New York,
NY, USA, 2006. ACM Press.

Conclusions
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Adaptive Manifold Fitting
(Part I)

Luiz Velho
IMPA
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Outline

• Fitting Surfaces to Very Large Meshes

• Multiresolution Operators

• Building Base Meshes by Simplification

• Adaptive Mesh Refinement

• Conclusions
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Surface Fitting
• Very Large Meshes (106 vertices) 

- Challenging Problem!
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Surface Fitting
• Very Large Meshes (106 vertices) 

- Challenging Problem!
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Manifolds and Fitting
• Basic Setting

- Gluing Data proportional to Mesh Size

• Problem:  Very Large Meshes

- Computationally Inefficient

- Do not Exploit Approximation Power

• Solution:

- Adaptation

168



Adaptive Fitting
• Optimization Formulation:

- Given an Approximation Error

- Find       with Smallest Number of Charts

• Strategy:

- Combine
• Multiresolution Structure
• Manifold Surface Approximation
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Multiresolution Framework

• Simplicial Multi-triangulation

- Stellar Theory

• Building Base Meshes

- Surface Simplification

• Adaptive Fitting

- 4-8 Refinement
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Stellar Theory
• Topological Operators

• Edge Split and Weld 
- Change Mesh Resolution

• Edge Flip
- Change Mesh Connectivity
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Stellar Simplification
• Basic Elements:

I. Operator Factorization

II. Quadric Error Metric

- Edge Collapse

- Flip + Weld

172



Basic Algorithm
• Repeat for N Resolution Levels

1. Rank Vertices Based on Quadric Error

2. Select Independent Set of Clusters

3. Simplify Mesh using Stellar Operators

✴   Properties

- Logarithmic Height

- Good Aspect Ratios
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Example 1:  Plane
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Example 2:  Cow
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Variable Resolution Mesh
• Underlying Semi-Regular Structure

- Tri-quad Base Mesh

- 4-8 Subdivision
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Building the Base Mesh
1. Two-Face Clusters + Single Triangles

2. Barycenter Subdivision

177



4-8 Subdivision
• Interleaved Binary Subdivision

• Non-Uniform Refinement

i i+1 i+2
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Binary Multi-Triangulation

Base Mesh

Edge Splits
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Adaptive Refinement
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Example I:  Uniform
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Example 2:  Adaptive
• Application-Dependent Criteria

Spatial Selection Curvature
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Conclusions
• Simplicial Multiresolution

- Powerful Mechanism for Adaptation

• First Part of the Solution for Surface Fitting

- Simplification

- Adaptive Refinement 

• Second Part (Next)

- Geodesic Parametrization

- Bezier Approximation
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Adaptive Manifold Fitting
(Part II)

Dimas Martínez Morera
UFAL
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Outline

• The Surface Fitting Problem

• Adaptive Fitting

• Discrete Geodesics

• Conclusions
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The Surface Fitting Problem
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The Surface Fitting Problem
We are a given a piecewise-linear surface, ST , in R3, with an

empty boundary, a positive integer k, and a positive number

ε, . . .

ST
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The Surface Fitting Problem
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The Surface Fitting Problem
We want to find a Ck surface S ⊂ R3 . . .

S ⊂ R3

187



The Surface Fitting Problem
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The Surface Fitting Problem
such that there exists a homeomorphism, h : S → |ST |, satis-

fying

‖h(v) − v‖ ≤ ε ,

for every vertex v of ST .

STS
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The Surface Fitting Problem
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The Surface Fitting Problem
REMARK:

ST is expected to be “very large” (∼ 106 vertices).
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Adaptive Fitting
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Adaptive Fitting

PIPELINE
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Adaptive Fitting
ST

PIPELINE
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Adaptive Fitting
ST

S̃T = Simplify ST

PIPELINE
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Adaptive Fitting
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S̃T = Simplify ST

Embed S̃T in |ST |

PIPELINE
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Adaptive Fitting
ST

S̃T = Simplify ST

Embed S̃T in |ST |

Create S from S̃T

S

PIPELINE
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Adaptive Fitting
ST

S̃T = Simplify ST

Embed S̃T in |ST |

Create S from S̃T

S

Refine S̃T

PIPELINE
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Adaptive Fitting
ST S̃T = Simplify ST
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Adaptive Fitting
ST S̃T = Simplify ST

• Four-Face Clusters Algorithm
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Adaptive Fitting
ST S̃T = Simplify ST

• Four-Face Clusters Algorithm

ST S̃T
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Adaptive Fitting
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Embed S̃T in |ST |

Adaptive Fitting
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Embed S̃T in |ST |

Adaptive Fitting

• Each edge of S̃T is embedded in |ST | as a “geodesic”.
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Adaptive Fitting

• Each edge of S̃T is embedded in |ST | as a “geodesic”.

S̃T
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Embed S̃T in |ST |

Adaptive Fitting
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ST S̃T
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Embed S̃T in |ST |

Adaptive Fitting

• Each edge of S̃T is embedded in |ST | as a “geodesic”.

ST S̃T
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Adaptive Fitting
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Adaptive Fitting
REMARK:

The vertices of S̃T ARE vertices of ST .

ST S̃T

193



Adaptive Fitting
REMARK:

The vertices of S̃T ARE vertices of ST .

ST S̃T
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Adaptive Fitting
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When defining geodesic triangles, we can violate the manifold

property of the geodesic mesh, as illustrated by the figure

below:

PROBLEM:

Adaptive Fitting
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When defining geodesic triangles, we can violate the manifold

property of the geodesic mesh, as illustrated by the figure

below:

PROBLEM:

Adaptive Fitting
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Adaptive Fitting
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Create S from S̃T

Adaptive Fitting
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S̃T

• For each vertex v of S̃T , we consider the P-polygon, Pv,

of v in R2, and the standard triangulation, Tv, of the

P-polygon Pv.

Create S from S̃T

Adaptive Fitting
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S̃T

• For each vertex v of S̃T , we consider the P-polygon, Pv,

of v in R2, and the standard triangulation, Tv, of the

P-polygon Pv.

Create S from S̃T

Adaptive Fitting

v
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S̃T

• For each vertex v of S̃T , we consider the P-polygon, Pv,

of v in R2, and the standard triangulation, Tv, of the

P-polygon Pv.

Create S from S̃T

Adaptive Fitting

v

Tv

sv(v)
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Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• Consider the embedding of the star, st(v, S̃T ), of v in

ST .

ST
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Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• Map the vertices of ST bounded by the embedding of

st(v, S̃T ) to Tv.

v

u

w

ST

σ

w

u

v

S̃T
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Adaptive Fitting
Create S from S̃T

• Map the vertices of ST bounded by the embedding of

st(v, S̃T ) to Tv.

v

u

w

ST
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Adaptive Fitting

Tv

sv(v)

sv(u)

sv(w)

sv(σ)

Create S from S̃T

• Map the vertices of ST bounded by the embedding of

st(v, S̃T ) to Tv.

v

u

w

ST
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Adaptive Fitting

Tv

sv(v)

sv(u)

sv(w)

v

u

w

ST

Create S from S̃T

• Map the vertices of ST bounded by the embedding of

st(v, S̃T ) to Tv.
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Adaptive Fitting

Tv

sv(v)

sv(u)

sv(w)

v

u

w

ST

Create S from S̃T

• Map the vertices of ST bounded by the embedding of

st(v, S̃T ) to Tv.
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Adaptive Fitting

Tv

sv(v)

sv(u)

sv(w)

v

u

w

ST

Create S from S̃T

• Points where geodesics intersect edges of ST are also

mapped to Tv.
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Adaptive Fitting

Tv

sv(v)

sv(u)

sv(w)

v

u

w

ST

Create S from S̃T

• Points where geodesics intersect edges of ST are also

mapped to Tv.
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Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• How is this mapping done?
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Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• We map the vertices in each “curved” triangle sepa-

rately.

v

u

w

ST

“curved triangle”

202



Adaptive Fitting
Create S from S̃T

v

u

w

ST

• We use Floater’s parametrization to build the map for

each ”curved” triangle.
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Adaptive Fitting
Create S from S̃T

v

u

w

ST

• We use Floater’s parametrization to build the map for

each ”curved” triangle.
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Adaptive Fitting
Create S from S̃T

v

u

w

ST

• We use Floater’s parametrization to build the map for

each ”curved” triangle.

sv(v) sv(u)

sv(w)
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Adaptive Fitting
Create S from S̃T

• For each triangle in st(v, S̃T ), compute the shape func-

tion ψ(σ,v).

Tv

sv(v)
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Adaptive Fitting
Create S from S̃T

• For each triangle in st(v, S̃T ), compute the shape func-

tion ψ(σ,v).

Tv

sv(v)
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Adaptive Fitting
Create S from S̃T

• For each triangle in st(v, S̃T ), compute the shape func-

tion ψ(σ,v).

Tv

sv(v)

Ω(σ,v)
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Adaptive Fitting
Create S from S̃T

• For each triangle in st(v, S̃T ), compute the shape func-

tion ψ(σ,v).

Tv

sv(v)

Ω(σ,v)f−1
(σ,v)(Ω(σ,v))
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Adaptive Fitting
Create S from S̃T

• For each triangle in st(v, S̃T ), compute the shape func-

tion ψ(σ,v).

Tv

sv(v)

Ω(σ,v)f−1
(σ,v)(Ω(σ,v))

ψ(σ,v)(Ω(σ,v))

204



Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• Control points of ψ(σ,v) are computed by a least squares

procedure.
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Adaptive Fitting
Create S from S̃T

• Control points of ψ(σ,v) are computed by a least squares

procedure.

• But, this time, the sample points are the vertices of ST

that correspond to the points in Tv through Floater’s

parametrization!
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Adaptive Fitting
Create S from S̃T
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Adaptive Fitting
Create S from S̃T

• For each point p in Tv, we compute the approximation

error,

‖q − ψ(σ,v)(p)‖ ,

where q is the vertex of ST corresponding to p through

Floater’s parametrization.
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Adaptive Fitting
Create S from S̃T

• For each point p in Tv, we compute the approximation

error,

‖q − ψ(σ,v)(p)‖ ,

where q is the vertex of ST corresponding to p through

Floater’s parametrization.

• If the above error is smaller than the given number ε,

we keep computing ψ(τ,u), for all pairs (τ, u) ∈ I. Oth-

erwise, we stop this process and go to the refinement

step.
206



Adaptive Fitting
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Adaptive Fitting

Embed S̃T in |ST |

Create S from S̃T

Refine S̃T

Refine S̃T

• We locally refine S̃T using the stellar operations and the

4-8 refinement, and then embed the resulting S̃T in |ST |
again.
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Discrete Geodesics
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Discrete Geodesics
• Locally Shortest Geodesic:

A curve joining two points, A and B, on a polyhedral

surface. It is a local minimum of the length functional.
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Discrete Geodesics
• Locally Shortest Geodesic:

A curve joining two points, A and B, on a polyhedral

surface. It is a local minimum of the length functional.

• Straighest Geodesic:

A curve beginning at point A and moving in the direc-

tion of the tangent vector. It has zero discrete geodesic

curvature everywhere.

208



Discrete Geodesics
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Discrete Geodesics
Locally shortest geodesics:
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Discrete Geodesics

Exact algorithms:

• Mitchell, Mount, and Papadimitriou (1987)

• Chen and Han (1996)

• Kapoor (1999)

• Surazhsky, Surazhsky, Kirsanov, Gortler, and Hoppe
(2005)

Locally shortest geodesics:
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Discrete Geodesics
Locally shortest geodesics:
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Discrete Geodesics
Locally shortest geodesics:

Approximate algorithms:

• Kimmel and Sethian (1998)

• Mart́ınez, Velho, and Carvalho (2004)

• Surazhsky, Surazhsky, Kirsanov, Gortler, and Hoppe
(2005)
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Discrete Geodesics
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Discrete Geodesics
A Two-Step Algorithm:
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Discrete Geodesics
A Two-Step Algorithm:

Step 1:

Find an initial curve joining A and B.
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Discrete Geodesics
A Two-Step Algorithm:
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Discrete Geodesics
A Two-Step Algorithm:

Step 2:

Iteratively modify the position of each curve vertex.
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Discrete Geodesics
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Discrete Geodesics
Step 1:

Find an initial curve joining A and B.
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Discrete Geodesics
Step 1:

Find an initial curve joining A and B.

• Fast Marching Method
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Discrete Geodesics
Step 1:

Find an initial curve joining A and B.

• Fast Marching Method

• Define a distance function at the vertices, d(v) =
dist(A, V ), using an approximation of the eikonal equa-

tion

|∇d| = 1 .
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Discrete Geodesics
Step 1:

Find an initial curve joining A and B.
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Discrete Geodesics
Step 1:

Find an initial curve joining A and B.

• Back-integrate the differential equation:















dΓ0

ds
(s) = −∇d(Γ0(s))

Γ0(0) = B .
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Discrete Geodesics
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

• Given a curve Γi, we want to get a shorter curve, Γi+1,

with the same endpoints.
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– a geodesic should be a line segment in the interior

of a face;
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

• Given a curve Γi, we want to get a shorter curve, Γi+1,

with the same endpoints.

– a geodesic should be a line segment in the interior

of a face;

– the curve will be a polygonal with nodes belonging

to the edges of the mesh;

215



Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

• Given a curve Γi, we want to get a shorter curve, Γi+1,

with the same endpoints.

– a geodesic should be a line segment in the interior

of a face;

– the curve will be a polygonal with nodes belonging

to the edges of the mesh;

– the algorithm will correct the position of the curve

nodes;
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

• Given a curve Γi, we want to get a shorter curve, Γi+1,

with the same endpoints.

– a geodesic should be a line segment in the interior

of a face;

– the curve will be a polygonal with nodes belonging

to the edges of the mesh;

– the algorithm will correct the position of the curve

nodes;

– distinct behavior for “edge nodes” and “vertex

nodes”.
215



Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

Edges nodes:
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.
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Discrete Geodesics
Step 2:

Iteratively modify the position of each curve vertex.

Vertex nodes:
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Discrete Geodesics
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Discrete Geodesics
Examples:

218



Discrete Geodesics
Examples:
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Discrete Geodesics
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Discrete Geodesics
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Discrete Geodesics

When defining geodesic triangles, we can violate the manifold

property of the geodesic mesh, as illustrated by the figure

below:

Adaptive Fitting:
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Discrete Geodesics
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Discrete Geodesics
Solution:

Compute the geodesic curve AB as the geodesic resulting from

using the concatenation of geodesics AC and CB as initial

approximation:
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Solution:

Compute the geodesic curve AB as the geodesic resulting from
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approximation:

A

B

C
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Discrete Geodesics
Solution:

Compute the geodesic curve AB as the geodesic resulting from

using the concatenation of geodesics AC and CB as initial

approximation:

A

B

C
C

A

B
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Conclusions
• Adaptive fitting pipeline is not new, but its elements are.

• This is the “real deal” when it comes to comparisons be-

tween smooth surfaces and very dense polygonal meshes.

• Implementation of the adaptive fitting is still under de-

velopment.

• More specifically, the refinement step has not been com-

pleted.
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Applications of  Manifolds 
and 

Research Challenges

Luiz Velho
IMPA
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Outline
• Concepts

• Illumination

• Appearance

• Simulation

• Faces

• Manifold Learning

• Wrap-up
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• Two Points of  View

- Functions on surfaces     

- Functions defining surfaces

M 

Manifolds & Parametrization
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Desirable Properties
• Minimal Distortion

- Angle  

- Area  

• Smoothness

- Differentiability

- Continuity
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Graphical Objects
• Shape U

- Topology   (domain)
• Abstract Manifold

- Geometry  (function)
• Embedding

• Attributes  f

- Functions (co-domain)

O = (U,  f)

Texture 
Color 

226



G.O. Manifold Setting
• Canonical Surfaces

- Fixed Shape (defined apriori)

- Variable Functions (complex)
• ex:  Sphere

• Arbitrary Surfaces

- Complex Shape

- Computation on Surfaces (attributes)

- Building / Transforming (shape) 
• ex:   Triangle Meshes
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Applications
• Illumination

- Canonical  Manifold  +  Functions

• Appearance and Simulation

- Pseudo-Manifold  +  Attributes

• Faces

- Manifold  +  Geometric Deformation

• Surface Reconstruction

- Pseudo-Manifold  /  Topology Estimation
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Illumination
• Functions on the Sphere

- Light Fields / BRDFs

• Applications

- Capture / Synthesis

• Construction [Grimm 2002]
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Omnidirectional Images
• Panoramic Cameras

- Processing

• Multi-Camera Assembly

- Stitching / Blending

Cam 0 Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 

Cam 0 
Cam 1 

Cam 2 

Cam 4 

Cam 3 

Cam 5 
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Illumination Maps
• Environment Maps

- Area Sampling

• Light Maps

- Stratification
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Surface Properties
• Texture Atlas

- Albedo

- Normal Field

• Building from Images

- Projective Map
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Painting
• Color

• Normals
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Texture Synthesis
• Stationary / Quasi Stationary
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Simulation
• Solving Equations on Manifolds

- Surface Points

- Local Neighborhoods
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Fluids
• Vector Fields on Surfaces
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Faces
• Geometry + Appearance

[ G. Borshukov et al  SIGGRAPH 2003 ]
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Facial Expressions
• Deformations

238



Manifold Learning
• Estimate from Data Samples

- Topology

- Geometry
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Surfaces
• Point Sets
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N-Dimensional Case
• ex: Facial Expressions

241



Challenges
• Multi-Resolution 

- Hierarchical Atlas

- Dynamic Setting

• API

- Intuitive

- General

242



Questions ?
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