Python Robotics: An Environment for Exploring Robotics
Beyond LEGOs

Douglas Blank
Computer Science
Bryn Mawr College

Bryn Mawr, PA 19010
dblank@cs.brynmawr.edu

Abstract

This paper describes Pyro, a robotics programming en-
vironment designed to allow inexperienced undergradu-
ates to explore topics in advanced robotics. Pyro, which
stands for Python Robotics, runs on a number of ad-
vanced robotics platforms. In addition, programs in
Pyro can abstract away low-level details such that in-
dividual programs can work unchanged across very dif-
ferent robotics hardware. Results of using Pyro in an
undergraduate course are discussed.

Categories & Subject Descriptors

K.3 [Computers & Education]: Computer & Infor-
mation Science Education - Computer Science Educa-
tion.

General Terms

Design, Human Factors, Languages

Keywords:

Pedagogy, Robotics, Python

1 Introduction

The use of robots in the undergraduate curriculum has
grown tremendously in the last few years [9, 11, 7, 2, 5,

Permission to make digital or hand copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
require prior specific permission and/or a fee.

SIGCSE 03, February 19-23, Reno Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00

Lisa Meeden
Computer Science
Swarthmore College
Swarthmore, PA 19081

meeden@cs.swarthmore.edu

Deepak Kumar
Computer Science
Bryn Mawr College

Bryn Mawr, PA 19010

dkumar@cs.brynmawr.edu

12, 4, 6]. The availability of low cost, easy-to-use prod-
ucts (such as the LEGO Mindstorms, and Fred Martin’s
Handyboard [8]) has even led to a wide use of robots in
middle and high school curricula. Although this equip-
ment has been of enormous help in the introduction of
robotics to new students, many of the topics addressed
must be necessarily limited due to the simplistic nature
of the hardware. For example, more sophisticated ar-
tificial intelligence and robotics topics such as vision,
mapping, and planning cannot be fully addressed.

There are now many, medium-cost advanced robotics
platforms on the market, for example Probotics’ Cye,
ActivMedia’s Pioneer2 and AmigoBOT, and K-Team’s
Khepera to mention just a few. These robots often al-
low the optional use of cameras, sonar, and even laser
rangefinders. Unfortunately, these more advanced robot
platforms cater mostly to research-oriented users and
are often inaccessible to undergraduates. In addition,
there is not a unifying interface between these robots:
each one comes with its own (often proprietary) devel-
opment tools and each is substantially different from the
others (for example, implemented in Java, C++, some
other scripting language). If one did invest in learning
to use one robot platform, probably none of the code,
and possibly little of the knowledge, would transfer to
a different platform.

In this paper, we describe a project that addresses the
above situation. We are creating a set of tools that make
up the next generation teaching and research-level robot
laboratory. In developing these tools, we want to en-
sure that research-level robotics hardware and method-
ologies are accessible to computer science faculty who
may not have robotics experience or whose robotics ex-
perience was limited to Handyboard-type, LEGO-based
robots. The resulting system, called Pyro, was designed
with the following goals: the system should be easy for
beginning students to use, provide a modern object-
oriented programming paradigm, run on several plat-
forms, allow exploration of many different robot control
paradigms and methodologies, remain useful as users
gain expertise, be extendable, allow for the creation

Pyro

KheperaRabot tanyBoardRob-o el rabot
AR AP ol

Khepera Driver Pioneer Driver HE Driver el Driver
Module Muodule M odule Module
Khepera Ficneer HandyBoard Oitives

Figure 1: Pyro Architecture

of modern-looking visualizations, and be distributed as
open source.

In what follows, we first present an overview of the sys-
tem architecture, followed by a description of the model-
ing methodologies currently incorporated, programming
examples, and how it has been used in our curriculum.

2 Pyro: Python Robotics

Pyro stands for Python Robotics. As mentioned, one
of the goals of the Pyro project is to provide a pro-
gramming environment that can be used for experi-
menting with various types of intelligent controllers on
several robot platforms and simulators. Currently, the
robots supported include the Pioneer family (Pioneer2,
AmigoBOTs, etc.) and the Khepera family (Khepera
and Khepera 2 robots). Additionally, there are simu-
lators available for both of these types of robots that
Pyro can connect onto, and control, as well.

Although it is important to be able to control very dif-
ferent kinds of robots from a single application program-
ming interface (API), a more important goal was that
individual programs should be able to control very dif-
ferent kinds of robots. That is, a single program should
run on a 75 pound Pioneer2AT with, for example, laser
and sonar sensors, and that same program should also
run unchanged on a 2 inch tall Khepera with infrared
sensors. By developing the right level and types of ab-
stractions, Pyro largely succeeds in this goal. Examples
will be discussed below.

Pyro also has the ability to define different styles of
controllers. For example, the control system could be
an artificial neural network (ANN), a subsumption ar-
chitecture, a collection of fuzzy logic behaviors, or a
symbolic planner. Any such program that controls the
robot (physical or simulated) we refer to as a brain.
Each brain is written in Python and usually involves
extending existing class libraries (see Figure 1). The li-

puro@emergent ,brynmnawr , edu

Stopped!
Command: |

Figure 2: Dynamic 3-D visualization of a Khepera and
its infrared sensors.

braries help simplify robot-specific features and provide
insulation from the lowest level details of the hardware.
In fact, the abstraction provided uniformly accommo-
dates the use of actual physical robots or their sim-
ulations even though vastly different sensors, drivers,
motors, and communication protocols may be used un-
derneath the abstraction layer. Consequently, a robot
experimenter can concentrate on the behavior-level de-
tails of the robot.

Pyro also provides facilities for the visualization of var-
ious aspects of a robot experiment. Users can easily ex-
tend the visualization facilities by providing additional
Python code as needed in a particular experiment. For
example, you can easily create a graph to plot some as-
pect of a brain, or sensor, with just a few lines of code.
In addition, Pyro can, through Python’s OpenGL in-
terface, generate real-time 3D views. Figure 2 shows a
visualization of a Khepera robot and its infrared read-
ings. In keeping with the spirit of the Pyro project,
we created an abstract API so that 3D shapes can be
drawn in this window without knowing anything about
OpenGL.

The Python language has generated much interest in
recent years as a vehicle for teaching introductory
programming, object-oriented programming, and other
topics in computer science.! Because Pyro is imple-

!Peter Norvig has recently been porting the example code
from Russel and Norvig’s “ Artificial Intelligence: A Modern

mented in Python, everything that applies to Python
also applies to Pyro, both good and bad. Python
appears to be a language that inexperienced under-
graduates can pick up quite quickly. The language
is object-oriented without any limitations on multiple-
inheritance, and most objects are first-class. However,
because Python is interpreted, it is generally considered
a “scripting language” and wasn’t our first choice as a
language in which to write advanced robotics programs.

Before developing Pyro, we first examined existing
projects to see if any fit our constraints. There are many
open sourced robotics programming environments avail-
able; however, most are committed to a particular con-
trol strategy. Separating the control strategy code from
the rest of the system code seemed to require a major
rewrite in all cases that we examined. However, Team-
Bots [1] is one open source project that satisfied many
of our goals. TeamBots is written in Java, and, there-
fore, is object-oriented with many appropriate abstrac-
tions. However, because security is of such importance
in Java, there are some additional burdens placed on the
programmer at all levels of programming. For exam-
ple, multiple inheritance must be implemented through
single inheritance combined with interfaces. Although
such limitations can be overcome in an introductory
programming course, we did not want to have to ad-
dress them in our introductory robotics courses.

We decided to build a prototype using the extensible
modeling language XML in combination with C++ [3].
Basically, the code looked like HTML with C++ code
between the tags. Although this system had some nice
qualities derived from its XML roots, it turned out to
have all the complexities of XML and C++ combined,
and was therefore difficult for introductory students to
learn and debug. For example, even syntax errors could
be hard to track down because there were two levels of
parsing (one at the XML level, and another at the C++
level).

Having learned from the prototype, we decided to try
again, but this time the focus was on the usability from
the perspective of a new user. We found that the lan-
guage Python meets many of our goals. To our sur-
prise, we also found that Python had recently been
used for solving real-world complex programming prob-
lems. For example, [10] found in some specific searching
and string-processing tests that Python was better than
Java in terms of run-time and memory consumption,
and not much worse than C or C++.

However, the question remained: Would Python be fast
enough to use in a real-time robotics environment? Un-
fortunately, the only way to answer this question would
be to build a system and try it. Now that Pyro ex-

Approach.” That will no doubt bolster Python’s use in Al

Pyro program and graphics Updates/second
Bare brain with console +10,000
Bare brain with OpenGL 41,000
ANN with OpenGL +200
Fuzzy logic with OpenGL +20
Many ANNs + Vision + OpenGL less than 1

Table 1: Timing data from running Pyro on a Dual
Pentium 800 MHz Linux PC. OpenGL rendering was
done in hardware on the graphics card.

ists, we have tested its speed performing with differ-
ent types of brains, with different graphical outputs.
Table 1 shows the resulting data. Experiments have
shown that for doing very simple control, even with the
OpenGL graphics enabled, the software was quite capa-
ble. In fact, most modern medium-cost robotics equip-
ment can only handle about 10 updates per second, well
within Pyro’s typical performance.

However, Python, and therefore Pyro, doesn’t fair as
well with more complex brains. Trying a complex brain
with visual processing, and OpenGL graphics slow the
system down to less than one update per second. How-
ever, Python does allow the migration of code into C.
We expect further improvements in the future, and ex-
pect Moore’s Law to help.

2.1 Pyro Components

At this time, we have been working in Python for ap-
proximately a year. In that time, we have built the
following components: ANN Back-propagation of er-
ror module; Self-organizing map module; Fuzzy logic,
behavior-based brain module; Visual image processing
library; OpenGL interface and renderer; High-level, ab-
stract robot class; Generic brain class; Graphing mod-
ule; Generic simulator.

Each of these modules is written in Python. As such,
the modules and libraries can be used stand-alone, and
interactively at the Python prompt.

2.2 Pyro Examples

As mentioned, we have designed the highest level robot
class to make abstractions such that programs, when
written appropriately, can run unchanged on a variety
of platforms. For example, consider the follow 20 lines
of Pyro code:

from pyro.brain import Brain
from time import *
from random import random, seed
class Wander (Brain):
def step(self):
safeDistance = 0.85 # in Robot Units
1 = self.getRobot () .getSensorGroup(’min’, ’front-left’)[1]
r = self.getRobot().getSensorGroup(’min’, ’front-right’) [1]
f = self.getRobot () .getSensorGroup(*min’, ’front’) [1]
if (f < safeDistance):
if (random() < 0.5):

self.getRobot () .move(0, - random())
else:
self.getRobot () .move(0, random())
elif (1 < safeDistance):
self.getRobot () .move(0,-random())
elif (r < safeDistance):
self.getRobot () .move(0, random())
else: # nothing blocked, go straight
self.getRobot () .move(0.2, 0)

This little program defines a brain called Wander that
does just that. The program does indeed run on
the suitcase-sized Pioneer2, and the hockey puck-sized
Khepera. There are two mechanisms that allow this
portability. First, all units returned from range sensors
are given in “robot units.” That is, the units are con-
verted into values that are meaningful at the scale of
each robot. For example, 1 Khepera unit is equal to
about 60 mm, while 1 Pioneer unit is equal to about
2 feet. Secondly, we avoid referring to specific kinds
or positions of sensors. For example, in the above ex-
ample, we refer to the default range sensor by names
such as “front-left”. On the Pioneer this could be mea-
sured by three sonar sensors, while on the Khepera it
could be measured by a single infrared sensor. Although
these mechanisms have their limitations, much of cur-
rent advanced robotics problems can be handled in this
manner.

Contrast the previous example with the following pro-
gram that trains an artificial neural network to avoid
obstacles:

from pyro.brain import Brain
from pyro.brain.conx import *
class NNBrain(Brain):
def __init__(self, name, robot):
Brain.__init__(self, name, robot)
self.net = Network()
self.net.addThreeLayers(self.getRobot().get(*range’, ’count’), 2, 2)
self.maxvalue = self.getRobot().get(’range’, ’maxvalue’)
def scale(self, val):
return (val / self.maxvalue)
def step(self):
ins = map(self.scale, self.getRobot().get(’range’, ’all’))
self.net.setInputs([ins])
if self.getRobot().getSensorGroup(’min’, ’front’)[1] < 1:
target_trans = 0.0
elif self.getRobot().getSensorGroup(’min’, ’back’)[1] < 1:
target_trans = 1.0
else:
target_trans = 1.0
if self.getRobot().getSensorGroup(’min’, ’left’)[1] < 1:
target_rotate = 0.0
elif self.getRobot().getSensorGroup(’min’, ’right’)[1] < 1:
target_rotate = 1.0
else:
target_rotate = 0.5
self.net.setOutputs([[target_trans, target_rotatel])
self.net.sweep()
trans = (self.net.getLayer(’output’).activation[0] - .5) / 2.0
rotate = (self.net.getLayer(’output’).activation[1] - .5) / 2.0
self.getRobot () .move(trans, rotate)

Again, the code is quite short (30 lines) but packs in

everything necessary to explore an example of on-line
ANN learning on a robot.

Both of the previous examples showed direct reactive
control. That is, the robot’s movements were calcu-
lated on the spot, and directly sent to the motors. The
final example shows that a brain is nothing more than a
class, and it, too, can be changed into something more
sophisticated. Consider the following:

from pyro.brain.fuzzy import *
from pyro.brain.behaviors import *
from pyro.brain.behaviors.core import *
import math, time
from random import random
class Avoid (Behavior):
def init(self): # called when created
self .Effects(’translate’, .3)
self .Effects(’rotate’, .3)
def direction(self, dir, dist):
if dist < 1.0:
if dir < 0.0:
return 1.0 - dir
else:
return -1.0 - dir
else:
return 0.0
def update(self):
close_dist=self.getRobot () .getSensorGroup(’min’,’front-all’) [1]
close_angl=self.getRobot () .getSensorGroup(’min’,’front-all’) [2]/
math.pi
self.IF(Fuzzy(0.0, 1.5) << close_dist, ’translate’, 0.0)
self.IF(Fuzzy(0.0, 1.5) >> close_dist, ’translate’, .2)
self.IF(Fuzzy(0.0, 1.5) << close_dist, ’rotate’,
self.direction(close_angl, close_dist))
self.IF(Fuzzy(0.0, 1.5) >> close_dist, ’rotate’, 0.0)
class statel (State):
def init(self):
self.add(Avoid(1))
This brain is an example of a fuzzy logic behavior. Al-
though this behavior has the ability to blend actions
together into smoothly avoiding obstacles, it is only 28
lines long. In addition, the entire Behavior class that
implements this algorithm is currently only 200 lines
long, and is meant to be studied and modified by stu-

dents.

3 Pyro in the Curriculum

As seen above, Pyro code is well-formatted (a Python
requirement) and reminiscent of other languages’
object-oriented syntax. But how would novice program-
mers find Pyro? To explore this issue, Pyro was used
in the Spring 2002 semester in the Bryn Mawr College
course “Androids: Design and Practice.”

The class was composed of students from Swarthmore
College, Haverford College, and Bryn Mawr College.
The students’ programming experience covered a wide
range: from none to a lot. Although some had program-
ming experience, none of the students had used Python
prior to the class, but all of the students picked it up
quickly.

The course covered basic robot navigation, obstacle
avoidance, vision (including algorithms for blob detec-
tion, motion detection, color filtering, and color his-
tograms), and tracking.

After using Pyro for the last two thirds of the semester,
a questionnaire was given to them in order to explore
their views. The results were positive on the use of Pyro;
however, there was some confusion of understanding of
the total system. For example, some students were un-
able to clearly delineate the boundaries of the simulator
with the Pyro control system. Of course, the bound-
ary is obvious when dealing with real robots. However,
when everything is software, the separation is, appar-
ently, not clear. This confusion is probably enhanced

because the simulators are actually started up from
within the Pyro GUIL. No doubt, this particular problem
can be alleviated by limited use of the simulators.

Students also wished for more support in mapping abil-
ities in Pyro. Although this isn’t in the area of our re-
search, the ability to explore localization, and mapping
would make Pyro much more functional for high-level
behaviors. Currently, goals to have the robot “go to
room 232” are beyond the scope of what can be accom-
plished without high-level mapping abilities.

Overall, the students picked up Python easily, and
quickly covered many advanced topics in artificial in-
telligence and robotics. Although there was evidence
for some confusion, the majority of the important ideas
were understood.

We are planning on using Pyro, or parts of Pyro, in
other courses in our curricula, including the Introduc-
tion to Cognitive Science, Artificial Intelligence, Devel-
opmental Robotics, and Complexity Theory. In addi-
tion, we are planning to adapt these materials for use
in other schools.

Pyro has become the central tool in our research tool-
box. The ability to create complex visualizations on the
fly, and change core components easily with Python’s
objects has benefits that far outweigh any loss in speed.

4 Summary

Pyro was designed to be a robotics API and a set of
classes and libraries for exploring advanced robotics is-
sues on a variety of hardware platforms. It was designed
to allow inexperience undergraduate students to explore
all levels of an artificial intelligence and robotics system,
including everything under the hood. In addition, it is
surprisingly fast enough to be used as our main research
tool. Based on the success of Pyro in the classroom and
laboratory so far, we are planning on expanding its use
into other classes and projects.

Resources

Pyro is an open source, free software project. You
can find the full source code and documentation at
http://emergent.brynmawr.edu/wiki/?Pyro. This
work is funded in part by NSF CCLI Grant DUE-
0231363.

References

[1] Balch, T. Behavioral Diversity in Learning Robot
Teams. PhD thesis, Georgia Institute of Technol-
ogy, 1998.

[2] Beer, R. D., Chiel, H. J., and Drushel, R. F. Using
Autonomous Robotics to Teach Science and Engi-
neering. Communications of the ACM (June 1999).

[3] Blank, D. S., Hudson, J. H., Mashburn, B. C., and
Roberts, E. A. The XRCL Project: The Univer-
sity of Arkansas’ Entry into the AAAI 1999 Mo-
bile Robot Competition. Tech. rep., University of
Arkansas, 1999.

[4] Gallagher, J. C., and Perretta, S. WWW Au-
tonomous Robotics: Enabling Wide Area Access to
a Computer Engineering Practicum. Proceedings of
the Thirty-third SIGCSE Technical Symposium on
Computer Science Education 34, 1 (2002), 13-17.

[5] Harlan, R. M., Levine, D. B., and McClarigan, S.
The Khepera Robot and the kRobot Class: A Plat-
form for Introducing Robotics in the Undergradu-
ate Curriculum. Proceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Sci-
ence Education 83, 1 (2001), 105-109.

[6] Klassner, F. A Case Study of LEGO Mind-
storms Suitability for Artificial Intelligence and
Robotics Courses at the College Level. Proceedings
of the Thirty-third SIGCSE Technical Symposium
on Computer Science Education 34,1 (2002), 8-12.

[7] Kumar, D., and Meeden, L. A Robot Laboratory
for Teaching Artificial Intelligence. Proceedings of
the Twenty-ninth SIGCSE Technical Symposium
on Computer Science Education 30, 1 (1998).

[8] Martin, F. The handy board. World Wide Web,
URL is http:// les.www.media.mit.edu / groups /
el / Projects / handy-board /.

[9] Meeden, L. Using Robots As Introduction to
Computer Science. In Proceedings of the Ninth
Florida Artificial Intelligence Research Symposium
(FLAIRS) (1996), J. H. Stewman, Ed., Florida AI
Research Society, pp. 473-477.

[10] Prechelt, L. An empirical comparison of C,
C++, Java, Perl, Python, Rexx, and Tcl for a
search/string-processing program. Tech. rep., Uni-
versitat Karlsruhe, Fakultat fur Informatik, Ger-
many, 2000.

[11] Turner, C., Ford, K., Dobbs, S., and Suri, N.
Robots in the classroom. In Proceedings of the
Ninth Florida Artificial Intelligence Research Sym-
posium (FLAIRS) (1996), J. H. Stewman, Ed.,
Florida AI Research Society, pp. 497-500.

[12] Wolz, U. Teaching Design and Project Manage-
ment with LEGO RCX Robots. Proceedings of
the Thirty-second SIGCSE Technical Symposium
on Computer Science Education 33, 1 (2001), 95—
99.

