
CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

1

DEFINING NEW COMMANDS
In the last chapter, we explored one of the most useful features of the Python

programming language: the use of the interpreter in interactive mode to do on-the-fly

programming. You typed in a instruction at a prompt and instantly witnessed the

computer interpret and execute the task. Although dynamic, this way of programming

can be very tedious and frustrating: if you have a series of instructions that need to be

followed and you make one mistake, change your mind, or need to repeat the same task

multiple times, one-the-fly interpretation involves a whole lot of typing. And it is usually

the same thing, over and over again. Luckily, Python is capable of more than line-by-line

interactive programming, we can package multiple commands together to form a new

command, called a function. For example, if you wanted to plot and label the line graph

of the Marijuana data through time, you could define a new command plotDrugData as

follows
1
:

>>> def plotDrugData():

 plot(Year, Marijuana)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title('Marijuana Drug use by High School Seniors 1979-2007')

The first line defines the name of the new command to be plotDrugData. The lines that

follow are indented slightly and contain the commands that make up the plotDrugData

instruction, i.e., plot the data and label the plot. The indentation is an important part of

Python syntax and indicates that the indented commands are part of the definition.

Once you define a new command, you can try it out by entering the command in IDLE:

>>> plotDrugData()

Do This: If you already have Pylab up and running, try out the new command defined

above in IDLE (do not forget to import the DrugData.py file!) by entering the definition

above. You will notice that as soon as you type and enter the first line, IDLE

automatically indents the subsequent lines and the prompt indicator (>>>) disappears.

After entering the last line, hit the RETURN key again to end the definition. Your prompt

should return indicate that the command has been defined.

Run the plotDrugData command. Close the figure and run it again.

In Python defining and running a new command is a two step process. First, you define

the function by using the def syntax as show above. Note, however, that when the

function is defined, the commands that make up the function do not get carried out.

Instead, you have to explicitly tell Python to issue the new command. This is called

1
 NOTE: New Python and Pylab commands will frequently be introduced throughout the text. All new

commands will be summarized at the end of the chapter in which they are introduced (Python or Pylab

Review sections)

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

2

invocation. When a function is invoked, all the commands that make up its definition

will be executed in the sequence in which they are listed. Invocation allows you to use

the function over and over again.

What if we wanted decided that we didn’t want to plot the Marijuana data, but we wanted

to plot the Cigarette data instead? We could redefine the function as follows:

>>> def plotDrugData():

 plot(Year, Cigarette)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title('Cigarette Drug use by High School Seniors 1979-2007')

but doing so sort of defeats the purpose of writing a function in the first place, which is,

in part, to reduce the amount of typing that we need to do.

Adding Flexibility to Commands: Parameters

If you look at the definition of the plotDrugData function, you will notice the use of

parentheses, (), both when defining the function and invoking it. You have also used

other commands, or functions, all of which have parentheses in them. Functions can

specify certain parameters (or values) that impact the way instructions are carried out by

placing them in parentheses. For example, the plot command takes two values that you

specify, which indicated what data are plotted along the x- and y-axes. It can also take

additional values that indicate the format of the plotted values (lines, markers, etc.):

>>> plot(x, y, '-rs')

In the above example, x, y, and '-rs', are all values passed to the function through

parameters. Similarly, we could have chosen to specify which drug data we want to plot

by adding a parameter to the plotDrugData function:

>>> def plotDrugData(data, name):

 plot(Year, data)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')

where the first parameter is the drug as stored by Python and the second is a text string

that contains the name of the drug (so that the title of the plot is correct). A function can

have any number of parameters and thus can be flexible and customized. With the new

definition of plotDrugData, we can now plot and label any of the data provided in the

DrugData.py file:

>>> plotDrugData(Marijuana, 'Marijuana')

or

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

3

>>> plotDrugData(Heroin, 'Heroin')

Saving New Commands in Modules

While a step in the right direction, this way of defining new commands is still interactive,

and the result is only temporary; when you exit IDLE the function disappears and you

will have to retype it the next time. Or, if you want to make a simple change (e.g., add

parameters), you need to retype the whole thing from scratch. Plus, you could imagine

that functions can get quite complicated (and involve a lot of steps). Luckily, Python

enables you to define new functions and store them in files on your computer. Each file

is called a module and can be used over and over again. Let’s illustrate this by creating a

module for out plotDrugData function:

File: plotDrugData.py

Purpose: A useful function that plots drug use through time

Author: Your Name Here

Import Pylab

from pylab import *

Import Data

from DrugData import *

Define the functions

def plotDrugData(data, name):

 plot(Year, data) # generate the data plot

 show() # display the figure

 xlabel('Year') # label the plot

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')

All lines beginning with a “#” sign are called comments. These are annotations that help

us understand and document our Python programs. Comments can be placed anywhere,

including directly after a command. The # sign marks the beginning of a comment,

which then continues to the end of the line. Anything following the # sign is ignored and

not interpreted as a command by the computer. It is good programming practice to make

liberal use of comments in all your programs so that you (and others) can read and

understand your code.

Notice that we have added the import commands at top. If you do this for any module

that requires the use of the Pylab interface, you will only have to import Pylab at the

IDLE prompt if you plan to use IDLE interactively. Note: you will not always need the

DrugData.py file, only import it when you use that data.

The import commands are then followed by our function definition, typed exactly as it

was entered (plus some commenting) in the interactive shell. This module only contains

one function definition, but modules may actually contain multiple definitions.

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

4

Do This: Create and store the plotDrugData function as a module in IDLE by first

asking IDLE to open a new window (choose New Window from the File menu). Next,

enter the text containing the definition above and save them in a file (let’s call it

plotDrugData.py) in your Python folder (the same place where you have your IDLE

short-cut and StartPython.py file). You must enter the .py extension when saving your

file and make sure that they are always saved in the same folder as the Python short-cut.

This will make it easier for IDLE (and you) to locate your modules.

Once the file is created, you can now use it in IDLE by entering the command:

>>> from plotDrugData import *

We can then invoke the plotDrugData command. For example, the following plots the

Cocaine data:

As you can see, accessing the command you defined is done in the same way that you

access the commands in the Pylab interface. This is one of the nice features of Python,

which encourages its users to extend the capabilities of the system through defining new

functions and storing them in modules. Thus, importing functionality from a module you

write is no different from importing commands from a module someone else has written

(such as Pylab). In general the Python import command specifies two features: the

module name and what is being imported:

from <MODULE NAME> import <SOMETHING>

where <MODULE NAME> is the name of the module (e.g., pylab, plotDrugData) and

<SOMETHING> specifies the commands or capabilities that you are importing. By

specifying * for <SOMETHING> we tell Python to import everything defined in the module.

Thus, the command from pylab import * tells Python to import everything defined in

the pylab module. Everything defined in the module is listed and documented on the

Matplotlib website (http://matplotlib.sourceforge.net/backends.html; Pylab is a module

that provides an interface allowing easy use the computational power of Matplotlib, an

extensive math and plotting library.

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

5

Do This: Play around with the plotDrugData command for a while. Use it to plot

different types of data. Modify the module so that the line that is plotted is red. Save

your changes. Invoke the plotDrugData command again. Did the line plot in red? No it

did not!

Changes made to modules are not immediately available in the interactive Python

interpreter, or shell. When you modify a module, you need to recompile it so that IDLE

knows that the contents have changed. Unfortunately, doing so is not as simple as re-

importing the module using the import statement. Go ahead and try it. Enter the

following at the prompt:

>>> from plotDrugData import *

>>> plotDrugData(Cocaine, 'Cocaine')

Did the line plot in red? No it did not!

If you were paying attention, you noticed that IDLE did not spend as much time

importing the module as it had the first time you imported it during this session. That is

because it recognized that the module was already loaded and did not actually re-import

it! This is one defect in the IDLE interface; we need to clear its memory before we can

load our modified module.

If we were not using Pylab and had started IDLE by double-clicking on the IDLE

(Python GUI) short-cut, we would do this by selecting Restart Shell from the Shell

menu. However, you’ve probably noticed that in your IDLE window there is no Shell

menu! This is a consequence of the way we load IDLE so that the Pylab interface will

work and it means that, unfortunately, to get IDLE to re-import a module you must exit

and then reload the shell.

Returning a Value

Parameters provide a way for you (or the user) to give a command information it needs to

perform its task. These parameters are the input to the function. Sometimes, however,

we also require a function to return some information, i.e., provide output! This task

involves some concepts we will be addressing in more detail later, but the actual task of

returning a value is actually quite simple.

A common situation in which you might require a program or function to return a value is

the performance of a simple calculation. Consider for example, the function

mean(<DATA>) which calculates the average of the data stored in some variable,

indicated by <DATA>. Variables will be discussed in more detail in the next chapter.

Executing the following in IDLE, for example:

>>> mean(AnyDrug)

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

6

will produce the following:

In other words, executing the command produces an output. In the above example, that

output is displayed on the screen (in blue). We can also tell Python to store the value that

is generated by assigning it to a variable through the use of the following syntax

>>> x = mean(AnyDrug)

When defining our own commands, we can let Python know that we wish the function to

generate output by using the command return. For example, perhaps we get confused

by the term “mean” and wish to use the term “average” instead:

def average(x):

 # returns the mean of the data, x

 return mean(x)

or alternatively

def average(x):

 # returns the mean of the data, x

 a = mean(x)

 return a

The general form of the return statement is

return <EXPRESSION>

That is, the function in which this statement occurs will return the value of

<EXPRESSION> (and incidentally exit the function) when it encounters the return

statement. Thus, the function will exit as soon as the return statement is evaluated. For

example:

def average(x):

 # returns the mean of the data, x

 a = mean(x)

 return a

 plot(x)

In the above function, the final command (plot(x)) will not get executed! In fact, if you

enter this function interactively in IDLE or in the IDLE editor, it will stop indenting,

indicating that the function definition has ended.

Functions as Building Blocks

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

7

Now that we have learned to define new commands from existing ones, we can start to

discuss a little bit more of about how Python works. The basic syntax for defining a

function in Python is:

def <FUNCTION NAME> (<PARAMETERS>):

 <SOMETHING>

 :

 <SOMETHING>

In other words, to define a new function we start by using the word def, followed by the

name of the function (<FUNCTION NAME>). This is then followed by any <PARAMETERS>

enclosed in parentheses, followed by a colon (:). This line is followed by the commands

that make up the function definition. Each command needs to be place on a separate line

and should be indented the same amount. The number of spaces that makes up the

indentation is not important as long as all the lines are aligned. This serves two

purposes. First, it makes the definition more readable. For example, consider the

following:

def plotDrugData():

 plot(Year, Marijuana)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title('Marijuana Drug use by High School Seniors 1979-2007')

def plotDrugData():

 plot(Year, Marijuana); show()

 xlabel('Year'); ylabel('Percentage')

 title('Marijuana Drug use by High School Seniors 1979-2007')

The first definition will not be accepted by Python:

IDLE reports that there is an IndentationError (a type of syntax error) and either

highlights or reports the line number on which the error occurred. This is because Python

strictly enforces the indentation rule described above. The second definition, however, is

acceptable, for two reasons: 1) indentation is consistent and commands can be entered on

the same line if they are separated by a semi-colon (;). We would recommend that you

continue to enter each command on a separate line until you are more comfortable with

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

8

Python. Plus, it makes code a lot easier to read. Most importantly, however, you will

notice that IDLE makes indentation easy by usually doing it for you!!

Another feature of IDLE that enhances readability of Python programs is the use of color

to highlight certain types of syntax. In the screen shot above, for example, the word def

is in orange, the name of the function is in blue, strings are in green, and the error

message is in red. Other colors are used in other situations.

The idea of code re-usability that is introduced through the use of functions is a very

powerful and important concept in computing. When we define a new command using

existing commands we abstract a new set of instructions for the computer to perform.

We can also define other functions that use functions we have already defined (such as

plotDrugData). Thus, functions are the basic building-blocks of the bigger structure that

is a complex program.

PYTHON REVIEW
In this exercise we learned several Python commands. These included:

• Importing Modules:

from <MODULE NAME> import <SOMETHING>

• String Concatenation:

A phrase in between two single quotes (e.g., 'Any Drug') is a special piece of

code called a string. We will be talking about more strings later, but in this

chapter we did a bit of string manipulation that needs to be addressed. In the

plotDrugData module we included the following instruction:

title(name + ' Drug use by High School Seniors 1979-2007')

which told Python to set the text title to the string provided in the parameter,

name, added to the start of ' Drug use by High School Seniors 1979-

2007'. Try it out by entering and concatenating strings in IDLE.

• Function Definitions:

def <FUNCTION NAME>(<PARAMTER>):
 <SOMETHING>
 :

 <SOMETHING>

• Return Statements

 return <EXPRESSION>

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

9

• Multiple commands can be entered on the same line if separated by a semi-

colon (;)

• Arrays:

Arrays are lists of values stored as a single variable, using the syntax:

myArrayName = [value1, value2, value3, ...]

PYLAB REVIEW
In this exercise we learned several Pylab commands. These included:

• Labeling Plots

Axes

xlabel('label for x axis')
ylabel('label for y axis')

zlabel('label for z axis')

Title

title('plot title')

where the phase in between the single quotes is a string that indicates the text to

be printed. Like lines, labels have properties that can be modified using

keywords. These include the following:

color: a matplotlib color argument

fontsize: a scalar value

fontweight: 'bold', 'normal', 'light'
fontangle: 'normal', 'italic', 'oblique'
font: 'Courier', 'Times', 'Sans', 'Helvetica'
horizontalalignment: 'left', 'right', 'center'
verticalalignment: 'bottom', 'center', 'top'

for example

>>> xlabel('Year', color = 'r', fontweight ='bold')

adds the a red, bold label, “Year” to the x-axis.

• Calculating an Average:

The function mean(<ARRAY OF DATA>) can be used to calculate the average for a

list of numeric data values.

• Plotting

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

10

The plot() command can be invoked with either one or two arguments.

plot(x) # plots all values of the single variable x

plot(x, y) # plots all values of x against values of y;

x and y must have the same number of data points

EXERCISES
1. Read Chapters 2 and 3 from the Tufte book. Pick a figure in Chapter 2 that Tufte

argues is distorted but for which a correction is not provided. Why is this figure

distorted? How should the distortion be corrected? In Chapter 3, Tufte discusses

why artists draw graphics that lie. Considering that most scientists are not artists, in

addition to the reasons listed in the Chapter, why else would a scientific “artist”

produce a graphic that lies? Are any of these reasons justified (ethically)? (10 pts)

2. Define and save as a module a function that generates a series of bar charts on a

single figure that plots the following drugs versus Year: Alcohol, Cigarettes,

Marijuana, and Cocaine (the order is important to be able to visualize all the data).

You can set a color for each bar graph using the keyword argument color (e.g.,

color = 'k'). The function should also label the axes and title the graph. Run you

function in IDLE and save the result. What does this visualization tell you about the

relationship among the use of these drugs over time? Is this a good visualization?

Why or why not? (15 pts)

3. Define and save as a module a function that plots one type of drug data versus another

(e.g., Marijuana versus Cocaine use). The function should have parameters that allow

you to specify the two drugs to be compared and the format of the line (e.g., solid red

line 'r', dashed blue line '--b', magenta squares 'ms'). The function should also

label the axes and title the graph. Use your function to generate a variety of

comparisons; save your two favorites and explain the relationship illustrated by each

visualization. (15 pts)

4. Define and save as a module a function that calculates the average drug use from

1979 to 2007 for each type of drug (except AnyDrug). You can return the calculated

values by creating a type of variable called an array that stores all of the results with a

single name using the following syntax:

averageUse = [aMarijuana, aHallucinogens, aCocaine, etc...]

and then returning the averageUse variable. Test your function in IDLE. (25 pts)

5. Define and save as a module a function that calculates the average drug use for each

type of drug (except AnyDrug) and then plots the average drug use for each type of

drug as a scatter plot using the plot command (which can generate univariate as well

as bivariate graphs). HINT: you already did part of this!!! The function should also

label the axes and title the graph. Labeling the ticks on the x-axis correctly is actually

quite a difficult task and we will leave it for another day. When you print out your

CMSC 120: Visualizing Information

Chapter 2: Building with Blocks

11

final plot, you can label the ticks manually with a pencil so that it is easier to interpret

the plot. Or for the computer savvy you could edit the tick labels in a graphics editor

or paint program. Save and run the module; save the resulting plot and explain the

illustrated relationship. What insight does this visualization give you into the relative

use of each drug by high-school seniors over the past 28 years? Is this a good

visualization? Why or why not? (20 pts)

