Programs
In this course, we are using Python as a tool for generating visualizations. However, Python is a general purpose programming language that can be used to write software to control the computer or another device (such as a robot) through the computer. Thus, by learning to produce visualizations you are also learning how to program computers.
The basic structure of Python program is as follows:

def main():

 <do something>

 <do something>

 ...

Creating a program is essentially the same as defining a function. We are just adopting a convention that all of our programs will be called main. In general, the structure of a program is as follows (we have provided line numbers so that we can refer to them:

Line 1: from pylab import *

Line 2: any other imports

Line 3: function definitions

Line 4: def main():

Line 5: <do something>

Line 6: <do something>

Line 7: ...

Line 8: main()

Every visualization program will begin with the same line (Line 1). This, as you have seen, imports the Pylab library. If you are using any other libraries or modules they should be imported next (this is shown in Line 2). Import statements are then followed by the definitions of any functions (Line 3) and the definition of the function main. The last line (Line 8) is an invocation of the function main. This is placed so that when you load the program into the Python Shell, the program will immediately start executing. In order to illustrate this, let us write a function that uses the plotDrugData function from the previous chapter to generate several of plots:
File: MutliPlot.py

Purpose: To generate plots of all drug use versus time
First import Pylab

from pylab import *

Then import the data

from DrugData import *

Define new functions

def plotDrugData(data, name):
 plot(Year, data)
 show()

 xlabel('Year')

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')
define the main program

def main():
 figure(1); plotDrugData(Marijuana, 'Marijuana')

 figure(2); plotDrugData(Cocaine, 'Cocaine')

 figure(3); plotDrugData(Heroin, 'Heroin')

 figure(4); plotDrugData(Hallucinogens, 'Hallucinogens')

 figure(5); plotDrugData(Alcohol, 'Alcohol')

 figure(6); plotDrugData(Cigarettes, 'Cigarettes')

invoke main

main()

We have used a new command in the definition of the main function: figure(<#>). Recall that figures are the windows in which Pylab generates a plot. Each figure is numbered (the first one opened is 1, the second 2, etc.). We can explicitly tell Pylab to open a new figure using the figure function, where the parameter is the number we wish to assign to the figure.

Do This: To run this program, start IDLE, create a new file, enter the program, and save it as MultiPlot.py. Then select Run Module from the Run menu in the text editor. Or, you could enter the following command in the Python shell:

>>> from MultiPlot.py import *

This statement is essentially equivalent to the Run Module option. When you run the program, notice that the program immediately generates all six graphics (comparisons of Drug use versus time).
Speaking Python
We have jumped into writing fairly sophisticated programs without giving you any formal introduction to the nuts and bolts of Python. Here, we will provide a few more details about the language and help to demystify some of the gibberish you have entered or received back from the Python Shell.
What you mainly know about Python so far are actually a set of commands used to generate and format visualizations. These visualization commands are integrated into the main body of the Python environment through the use of the Pylab library. Python comes with many other libraries (or modules) that we will be using throughout the course. If you need to access commands in any library, all you need to do is import them.

Libraries are mainly made up of sets of functions, which provide the basic building blocks for any program. In most programming languages, functions are created from a pre-defined set of functions and mechanism (or syntax) for defining additional functions. In the case of Python, this is the def construct. By now, the creation of functions should be familiar to you. When using the def construct to define a new function, you must provided Python with two pieces of information: the commands that define the task the function is to accomplish, and the name of the function. Names are a critical part of programming and Python has rules about what is an acceptable name.
Names
A name is a label that is used to identify a user-defined element of a program so that it can be manipulated. A name in Python must begin with either an alphabetic letter (a-z or A-Z) or an underscore (i.e., _) and can be followed by any sequence of numbers, digits, or underscores. No spaces. No symbols other than the underscore. Python names are case sensitive, meaning that myPlot and myplot and Myplot are distinct names as far as Python is concerned. Once you create a name, you must consistently use the same spelling. So, now that we know how to create a name, what sorts of things should we name?
Well, we know that names can be used to represent functions. In other words, what the computer does each time you use a function name (like plotDrugData) is specified in the definition of the function. Names can also be used to represent other elements of a program. For example, you may want to represent a quantity by a name, such as an average value or the label for an axes. You did this when you defined the function plotDrugData, shown below:
def plotDrugData(data, name):
 plot(Year, data)
 show()

 xlabel('Year')

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')
Functions take parameters (such as data and name) to help customize what they do. By parameterizing a function you are able to produce similar, but varying outcomes. In many ways, this is idea is similar to that of mathematical functions: sine(x), for example, computes the sine of whatever value you provide for x. However, for this to work, there has to be a way to define a function such that it is independent of specific parameter values. To do this, we use names to represent and designate specific values in a Python program. Names that represent values are called variables. What name you use is up to you, but in general, it is good programming practice to pick names that are easy to 1) read, 2) type, and 3) appropriately reflect the entity they represent.

Values

The ability to designate values by names is probably one of the most important features of programming. It is this facility that allows us to easily import, update, and otherwise manipulate information. Python provides a simple mechanism for designating values with names:
myFavoriteFood = 'curry'
x = 5

DowIndex = 12548.30.

Values can be numbers or strings. The above are examples of assignment statements in Python. The exact syntax of an assignment statement is:
<variable name> = <expression>

It reads as: Let the variable named by <variable name> be assigned the value that is the result of calculating the expression <expression>. So...what is an expression? The following are examples of expressions:
5

>>> 5 + 3

8

>>> 3 * 4

12

>>> 3.2 + 4.7

7.9

>>> 10 / 2

5

An expression is any Python command that returns a result. The simplest expression you can type is a number (as shown above). A number evaluates to itself. That is, a 5 is a 5. This special type of expression is called a literal. When you enter an expression, Python evaluates it and returns a result (e.g., 5 + 3 (8). Also, addition (+), subtraction (-), multiplication (*), and division (/) can be used on numbers to form expressions that involve numbers.
You may have also noticed that numbers can be written as whole numbers (3, 5, 10, 1655673, etc) or with decimal points (3.2, 0.5, etc) in them. Python (and most computer languages) distinguishes between these two types of numbers. Whole numbers are called integers and those with decimal points in them are called floating point numbers. While the arithmetic operations are defined on both kinds of numbers, there are some differences you should be aware of. For example:
>>> 10.0/3.0

3.3333333333333335

>>> 10/3

3

>>> 1/2

0

>>> 1.0/2

0.5

When you divide a floating point number by another floating point number, you get a floating point result. However, when you divide an integer by another integer, you get an integer result. Thus, in the examples above, you get the result 3.3333333333333335 when you divide 10.0 by 3.0, but you get 3 when you divide 10 by 3. Knowing this, the result of dividing 1 by 2 (see above) is zero (0) should not be surprising. That is, while the division operation looks the same (/), it treats integers differently than floating point values. However, if at least one of the numbers in an arithmetic operation is a floating point number, Python will give you a floating point result (see last example above).

There are many other types of values built into Python, including strings. Strings are text made up of sequences of characters. Python requires strings to be written enclosed in quotes, which can be single ('I am a string.'), double ("I am a string, also."), or even triple ('''Me too!!!'''). We will be talking about strings and related types in a later chapter.
Objects

Integers, floats, and strings are all data types that are an integral part of Python. Each type represents a certain set of values and has a set of associated operations that can be used to manipulate those values. In other words, data are passive entries manipulated and combined by active operations. This is the traditional approach to computation. However, to do more complex computation, it sometimes helps to view data in a different way.
Most modern programs are built using an object-oriented (OO) approach. Object-oriented programming is a very complex topic that involves many levels of abstraction. In this course, you will not be required to fully understand the OO approach, but you will have to use objects and so we need to spend some time discussing them.

The basic idea of object-oriented programming is to view a complex system as an interaction of objects. For us, objects are a special sort of active data type that combines data and operations. They know stuff (they contain data) and they do stuff (they have operations). Operations that belong to objects are called methods.

We have already used several objects in our Python programming. In fact every element of the Pylab interface is an object: any plot, figure, and label that you have generated is an object!
To understand objects let's try looking at more detail in one of the objects built-in to the Pylab interface: figures. As discussed earlier, figures are the windows in which Pylab produces its visualizations. A figure is also an object, defined in the Pylab library and is thus an active data type that contains information and has operations. The information contained in the figure object relates to its size, position, color, and other aspects of its format. It also contains information that connects it to a plot that may be visualized within it. The methods of the object allow you to create figures and manipulate any of the data they contain.
Do This: In the Python Shell, create a figure as follows:

>>> figure()

This invoking this command produces a new figure (and actually produces it as well). The act of invoking an object is called creating an instance of that object.
An Introduction to Graphics

Exercises

1. Read Chapter 4 of the Tufte book.

2.

