
CMSC 120: Visualizing Information

Creating a Program

1

PROGRAMS

In this course, we are using Python as a tool for generating visualizations. However,

Python is a general purpose programming language that can be used to write software

to control the computer or another device (such as a robot) through the computer.

Thus, by learning to produce visualizations you are also learning how to program

computers.

The basic structure of Python program is as follows:

def main():

 <do something>

 <do something>

 ...

Creating a program is essentially the same as defining a function. We are just adopting

a convention that all of our programs will be called main. In general, the structure of a

program is as follows (we have provided line numbers so that we can refer to them:

Line 1: from pylab import *

Line 2: any other imports

Line 3: function definitions

Line 4: def main():

Line 5: <do something>

Line 6: <do something>

Line 7: ...

Line 8: main()

Every visualization program will begin with the same line (Line 1). This, as you have

seen, imports the Pylab library. If you are using any other libraries or modules they

should be imported next (this is shown in Line 2). Import statements are then

followed by the definitions of any functions (Line 3) and the definition of the function

main. The last line (Line 8) is an invocation of the function main. This is placed so

that when you load the program into the Python Shell, the program will immediately

start executing. In order to illustrate this, let us write a function that uses the

plotDrugData function from the previous chapter to generate several of plots:

File: MutliPlot.py

Purpose: To generate plots of all drug use versus time

First import Pylab

from pylab import *

Then import the data

from DrugData import *

CMSC 120: Visualizing Information

Creating a Program

2

Define new functions

def plotDrugData(data, name):

 plot(Year, data)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')

define the main program

def main():

 figure(1); plotDrugData(Marijuana, 'Marijuana')

 figure(2); plotDrugData(Cocaine, 'Cocaine')

 figure(3); plotDrugData(Heroin, 'Heroin')

 figure(4); plotDrugData(Hallucinogens, 'Hallucinogens')

 figure(5); plotDrugData(Alcohol, 'Alcohol')

 figure(6); plotDrugData(Cigarettes, 'Cigarettes')

invoke main

main()

We have used a new command in the definition of the main function: figure(<#>).

Recall that figures are the windows in which Pylab generates a plot. Each figure is

numbered (the first one opened is 1, the second 2, etc.). We can explicitly tell Pylab to

open a new figure using the figure function, where the parameter is the number we

wish to assign to the figure.

Do This: To run this program, start IDLE, create a new file, enter the program, and save

it as MultiPlot.py. Then select Run Module from the Run menu in the text editor. Or,

you could enter the following command in the Python shell:

>>> from MultiPlot.py import *

This statement is essentially equivalent to the Run Module option. When you run the

program, notice that the program immediately generates all six graphics (comparisons

of Drug use versus time).

SPEAKING PYTHON

We have jumped into writing fairly sophisticated programs without giving you any

formal introduction to the nuts and bolts of Python. Here, we will provide a few more

details about the language and help to demystify some of the gibberish you have

entered or received back from the Python Shell.

What you mainly know about Python so far are actually a set of commands used to

generate and format visualizations. These visualization commands are integrated into

the main body of the Python environment through the use of the Pylab library. Python

comes with many other libraries (or modules) that we will be using throughout the

CMSC 120: Visualizing Information

Creating a Program

3

course. If you need to access commands in any library, all you need to do is import

them.

Libraries are mainly made up of sets of functions, which provide the basic building

blocks for any program. In most programming languages, functions are created from a

pre-defined set of functions and mechanism (or syntax) for defining additional

functions. In the case of Python, this is the def construct. By now, the creation of

functions should be familiar to you. When using the def construct to define a new

function, you must provided Python with two pieces of information: the commands that

define the task the function is to accomplish, and the name of the function. Names are

a critical part of programming and Python has rules about what is an acceptable name.

Names

A name is a label that is used to identify a user-defined element of a program so that it

can be manipulated. A name in Python must begin with either an alphabetic letter (a-z

or A-Z) or an underscore (i.e., _) and can be followed by any sequence of numbers,

digits, or underscores. No spaces. No symbols other than the underscore. Python

names are case sensitive, meaning that myPlot and myplot and Myplot are distinct

names as far as Python is concerned. Once you create a name, you must consistently

use the same spelling. So, now that we know how to create a name, what sorts of

things should we name?

Well, we know that names can be used to represent functions. In other words, what the

computer does each time you use a function name (like plotDrugData) is specified in

the definition of the function. Names can also be used to represent other elements of a

program. For example, you may want to represent a quantity by a name, such as an

average value or the label for an axes. You did this when you defined the function

plotDrugData, shown below:

def plotDrugData(data, name):

 plot(Year, data)

 show()

 xlabel('Year')

 ylabel('Percentage')

 title(name + ' Drug use by High School Seniors 1979-2007')

Functions take parameters (such as data and name) to help customize what they do. By

parameterizing a function you are able to produce similar, but varying outcomes. In

many ways, this is idea is similar to that of mathematical functions: sine(x), for example,

computes the sine of whatever value you provide for x. However, for this to work, there

has to be a way to define a function such that it is independent of specific parameter

values. To do this, we use names to represent and designate specific values in a Python

program. Names that represent values are called variables. What name you use is up

CMSC 120: Visualizing Information

Creating a Program

4

to you, but in general, it is good programming practice to pick names that are easy to 1)

read, 2) type, and 3) appropriately reflect the entity they represent.

Values

The ability to designate values by names is probably one of the most important features

of programming. It is this facility that allows us to easily import, update, and otherwise

manipulate information. Python provides a simple mechanism for designating values

with names:

myFavoriteFood = 'curry'

x = 5

DowIndex = 12548.30.

Values can be numbers or strings. The above are examples of assignment statements

in Python. The exact syntax of an assignment statement is:

<variable name> = <expression>

It reads as: Let the variable named by <variable name> be assigned the value that is

the result of calculating the expression <expression>. So...what is an expression? The

following are examples of expressions:

5

>>> 5 + 3

8

>>> 3 * 4

12

>>> 3.2 + 4.7

7.9

>>> 10 / 2

5

An expression is any Python command that returns a result. The simplest expression you

can type is a number (as shown above). A number evaluates to itself. That is, a 5 is a 5.

This special type of expression is called a literal. When you enter an expression, Python

evaluates it and returns a result (e.g., 5 + 3 � 8). Also, addition (+), subtraction (-),

multiplication (*), and division (/) can be used on numbers to form expressions that

involve numbers.

You may have also noticed that numbers can be written as whole numbers (3, 5, 10,

1655673, etc) or with decimal points (3.2, 0.5, etc) in them. Python (and most computer

languages) distinguishes between these two types of numbers. Whole numbers are

called integers and those with decimal points in them are called floating point numbers.

While the arithmetic operations are defined on both kinds of numbers, there are some

differences you should be aware of. For example:

CMSC 120: Visualizing Information

Creating a Program

5

>>> 10.0/3.0

3.3333333333333335

>>> 10/3

3

>>> 1/2

0

>>> 1.0/2

0.5

When you divide a floating point number by another floating point number, you get a

floating point result. However, when you divide an integer by another integer, you get

an integer result. Thus, in the examples above, you get the result 3.3333333333333335

when you divide 10.0 by 3.0, but you get 3 when you divide 10 by 3. Knowing this, the

result of dividing 1 by 2 (see above) is zero (0) should not be surprising. That is, while

the division operation looks the same (/), it treats integers differently than floating

point values. However, if at least one of the numbers in an arithmetic operation is a

floating point number, Python will give you a floating point result (see last example

above).

There are many other types of values built into Python, including strings. Strings are

text made up of sequences of characters. Python requires strings to be written enclosed

in quotes, which can be single ('I am a string.'), double ("I am a string,

also."), or even triple ('''Me too!!!'''). We will be talking about strings and

related types in a later chapter.

Objects

Integers, floats, and strings are all data types that are an integral part of Python. Each

type represents a certain set of values and has a set of associated operations that can be

used to manipulate those values. In other words, data are passive entries manipulated

and combined by active operations. This is the traditional approach to computation.

However, to do more complex computation, it sometimes helps to view data in a

different way.

Most modern programs are built using an object-oriented (OO) approach. Object-

oriented programming is a very complex topic that involves many levels of abstraction.

In this course, you will not be required to fully understand the OO approach, but you will

have to use objects and so we need to spend some time discussing them.

The basic idea of object-oriented programming is to view a complex system as an

interaction of objects. For us, objects are a special sort of active data type that

combines data and operations. They know stuff (they contain data) and they do stuff

(they have operations). Operations that belong to objects are called methods.

CMSC 120: Visualizing Information

Creating a Program

6

We have already used several objects in our Python programming. In fact every

element of the Pylab interface is an object: any plot, figure, and label that you have

generated is an object!

To understand objects let's try looking at more detail in one of the objects built-in to the

Pylab interface: figures. As discussed earlier, figures are the windows in which Pylab

produces its visualizations. A figure is also an object, defined in the Pylab library and is

thus an active data type that contains information and has operations. The information

contained in the figure object relates to its size, position, color, and other aspects of its

format. It also contains information that connects it to a plot that may be visualized

within it. The methods of the object allow you to create figures and manipulate any of

the data they contain.

Do This: In the Python Shell, create a figure as follows:

>>> figure()

Invoking this command produces a new figure (and actually produces it as well). A

function that creates a new object when invoked is called a constructor. When we use a

constructor to generate an object, we are creating an instance of that object. An

constructor is a Python command that can be evaluated (i.e., it produces and output);

thus, constructors are expressions and their output (instances) can be named using

variables. For example, the following:

>>> fig = figure()

assigns the instance of a figure created by the constructor to the name fig. This ability

to name objects gives Python and other object-oriented programming languages an

amazing amount of flexibility. First of all, it allows us to have multiple instances of the

same object. For example:

>>> fig1 = figure(1)

>>> fig2 = figure(2)

>>> myfig = figure(57)

We can pass a parameter to the figure() command which identifies the number of the

figure (i.e., order in the list of opened figures) , thus creating multiple open figures at

the same time. Each one can be then named by a variable.

Secondly, naming an object allows us to we can manipulate it and all the data that

comprises that object with very little effort. As stated earlier, all objects know stuff

(have data) and do stuff (have operations). Giving a name to an instance of an object

allows us to do stuff to the object and its data. To perform operations on objects, we

need to send the objects a message. Messages (or operations) which an object

CMSC 120: Visualizing Information

Creating a Program

7

responds are its methods. We can send objects messages using dot-notation. For

example, the following:

>>> fig.savefig('myfig.pdf')

Saves the figure fig to the pdf file myfig.pdf. There are many other messages we can

send to the our figure. For example, the following will make the face color of the figure

green:

>>> fig.set_facecolor('g')

A list of all the methods for a given Pylab object is listed in the Matplotlib class library,

which is linked from the course website.

GRAPHICS

Because objects are very tenable in nature (i.e., they can be held on to and

manipulated) , the easiest way to get familiar with them is often through the

manipulation of graphical elements (e.g., points, lines, rectangles, circles, and text). For

us, in our study of visualization, playing around with graphical elements is also

important so that we can appreciate how much work goes into the programming of a

Graphical User Interface (GUI) and a sophisticated plotting library such as Pylab.

Python is not a graphical language. In other words, the ability to produce graphics is not

built-in to Python the way it is in other languages (such as Visual Basic). Thus, to

produce graphical elements, we need to use a library. There are many such libraries,

but we are just going to use a simple one, called graphics that is downloadable from

the course website (in the links section). A link to full documentation for this library is

also provided.

ALERT: To get this graphics library to work correctly, you need to open IDLE by double-

clicking on your IDLE short-cut. If you choose to open IDLE by editing a .py file in IDLE,

your graphics commands will freeze-up the system. Kind of the opposite bug as seen in

Pylab!!!

To use the graphics library (or module) you need to download the file graphics.py and

save it in your Python folder. Then, like any other module, you need to import it to

access all of its features:

>>> from graphics import *

There are two types of objects defined in the graphics library: windows and objects to

be drawn. The GraphWin class defines a window in which drawing can be done, and

GraphObjects are provided that can be drawn in a GraphWin. Windows created by

GraphWin are actually fairly sophisticated: they can even accept input from the mouse!

CMSC 120: Visualizing Information

Creating a Program

8

Do This: In a new file, create the following graphics program. This will later serve as a

template for all graphics programs you will write in this course.

import the graphics library

from graphics import *

main program

def main():

 win = GraphWin('Window Title', 300, 300) # create a graphics window

 win.getMouse(); # wait for the mouse to be pressed in the window

 win.close() # close the graphics window

main()

The first step in any graphics program is to create a window. The command GraphWin()

is the constructor for a graphics window object. It takes three parameters: the title and

dimensions of the window. We then name the window created by assigning it to the

variable win. This object instance can then be manipulated using the dot-notation and

object methods. Run the module. The last two commands of the program provide

away for us to close the window and still have time to view the window by telling

Python to not do anything until the mouse is clicked in the window.

Try This: Comment-out the win.getMouse()command and re-run the program. What

happens?

As it is, our window is not very interesting. So let’s add some stuff. The graphics

module provides defines additional objects that are representations of drawing

elements. These include: Point, Line, Circle, Oval, Rectangle, Polygon,

Text, and Image. Various attributes of graphical objects can be set, such as outline-

color, fill-color, and line-width, in pretty much the same way you set line formats in

Pylab.

Before we begin to draw objects, however, we first need to say a few things about our

window. In particular, when we draw an object we need to be able to tell Python where

in a window we want something drawn! So, how do we know where is where?

Graphics windows use coordinate systems (just like mathematical coordinate systems)

to identify locations in the windows. There are many different coordinate systems, but

the default system used by your graphics window is as indicated below:

CMSC 120: Visualizing Information

Creating a Program

9

In this coordinate system, the upper left corner is the origin (0,0). The width and height

of the coordinate system are defined by passing parameters to the constructor

GraphWin(<title>, <xdimension>, <ydimension>). Any point in the system is defined by an x

and y coordinate that measures how far it is away from the origin in each direction.

Do This: Now that we know how we can determine the position of an object in our

window, we can begin to draw. Let’s start by drawing a Point.

import the graphics library

from graphics import *

main program

def main():

 win = GraphWin('Window Title', 300, 300) # create a graphics window

 # draw a point

 p = Point(75, 100) # create the point

 p.draw(win) # draw the point

 win.getMouse(); # wait for the mouse to be pressed in the window

 win.close() # close the graphics window

main()

Run the module. Congratulations! You’ve just drawn the Point at location x = 75, y =

100 on the screen. A boring black Point, but a Point nonetheless. This was

accomplished in two steps. First, we used a constructor to create a Point instance

(0,0)

(xsize, ysize)

(75, 100)

CMSC 120: Visualizing Information

Creating a Program

10

whose coordinates were (75, 100). We then used a Point method to draw the Point on

the graphics window, win. In general the syntax for creating and drawing a Point is:

<point-name> = Point(<x-coordinate>, <y-coordinate>)

<point-name>.draw(<window-name>)

Once an instance of a Point object is created, we can also modify any of its properties

through the use of methods that manipulate its features. For example, all objects are

initially created with an unfilled black line. To make our point red, we could add the

following command to our program:

p.setOutline('red')

Remember that the graphics library is different from Pylab and so manipulating

properties and identifying colors is done a bit differently. All of the properties and

available settings are listed in the graphics.py reference manual that is linked from the

course website.

Do This: Now it is time to move on to something a little more complicated. Let’s draw a

line:

import the graphics library

from graphics import *

main program

def main():

 win = GraphWin('Window Title', 300, 300) # create a graphics window

 myLine = Line(Point(0,0), Point(200, 200)) # create a line

 myLine.draw(win) # draw the line in the window

 win.getMouse(); # wait for the mouse to be pressed in the window

 win.close() # close the graphics window

main()

Note how drawing a line is much the same as drawing a point; however, instead of

providing one coordinate, we provide two: the start and end of the line. The graphics

library also provides some interesting functions just for formatting lines. For example,

the setArrow(<type>) method allows you to add an arrow to the end of the line.

The exact syntax for creating a line is:

<line-name> = Line(<point 1>, <point 2>)

<line-name>.draw(<window-name>)

In other words, you can define a line using two points that you have already created.

CMSC 120: Visualizing Information

Creating a Program

11

Creating two dimensional graphical elements is done in the exact same way that the one

dimensional elements are created. For example, to plot a circle in this program, you

would add the following statements:

c = Circle(Point(100,100), 50)

c.draw(win)

The syntax for creating a circle is:

<circle-name> = Circle(<center-point>, radius)

<circle-name>.draw(<window-name>)

Likewise, for creating a Rectangle you would use the following syntax:

<rectangle-name> = Rectangle(<point 1>, <point 2>)

<rectangle-name>.draw(<window-name>)

where the points define opposite corners of the rectangle. An Oval is defined in the

same way.

And again, for each object you can modify its properties: outline, fill, width, etc.

Read through the reference manual (~5 pages) to familiarize yourself with the rest of

the graphics objects and methods.

CMSC 120: Visualizing Information

Creating a Program

12

PYTHON REVIEW

In this chapter we learned a lot about Python syntax, including the following:

• The basic structure of a python program is as follows:

import modules

define functions

def main(): # define main function

 <do something>

 <do something>

 ...

main() # invoke main function

• Names are labels used to identify user-defined elements of a program. Names

must start with an alphabetic letter (A-Z, a-z) or an underscore and can be

followed by any sequence of letters, digits, or undercores. No spaces. No

symbols.

• Any command that returns a value is an expression.

• Values can be assigned to names using assignment statements:
<variable-name> = expression

PYLAB REVIEW

In this chapter we learned several Pylab commands. These included the following:

• The graphics window in which Pylab produces in plots is called a figure. Figures

are objects that can be manipulated by the following commands:

o figure(<number>): creates a new figure, titled: Figure <number>. If

number is not provided, the figure is titled Figure 1. The command is a

constructor that returns a pointer to an instance of a figure and can thus

be assigned a name.

o <figure-name>.savefig(‘myfig.pdf’): saves the figure <figure-

name> the file myfig.pdf.

o <figure-name>.set_facecolor(<color>): sets the background color

of the figure

GRAPHICS LIBRARY REVIEW

In this chapter we were introduced to basics of creating and drawing in a Graphics

window using the graphics.py module. We learned the following:

• Drawing is done in Graphics Window Objects, which can be manipulated with

the following commands:

CMSC 120: Visualizing Information

Creating a Program

13

o <window-name> = GraphWin('Window Title', <xdimension>,

<ydimension>): creates an instance of a graphic window object of

dimension <xdimension> and <ydimension> (in pixels), titles it and

assigns to the variable <window-name>.

o <window-name>.getMouse(): waits for the mouse button to be clicked in

the window

o <window-name>.close(): closes the window

• Once a window is created, Graphics Objects can be drawn in the window using

the following commands:

o Points:
� <point-name> = Point(<x-coordinate>, <y-coordinate

� <point-name>.draw(<window-name>)

o Lines:
� <line-name> = Line(<point1>, <point2>)

� <line-name>.draw(<window-name>)

o Rectangles:
� <rectangle-name> = Rectangle(<point1>, <point2>)

� <rectangle-name>.draw(<window-name>)

o Circles:
� <circle-name> = Circle(<center-point>, radius)

� <circle-name>.draw(<window-name>)

EXERCISES

NOTE: You will not be using Pylab for these Exercises!

1. There are 2.54 centimeters in every inch. Write a function that takes a

measurement in feet and converts it to a measure in meters. The function should

return the calculated result. (10 pts)

2. Develop a top-down design to help solve Exercise #4. (10 pts)

3. Use the graphing library to write a program that generates a line and scatter plot of

five points of data: (100, 50), (72, 10), (30, 27), (50, 13), (90, 43). The program

should graph the points relative to a set of axes (i.e., a vertical and horizontal line)

and label each axes. You do not need to worry about tick marks. Extra credit will be

given if you visualize each data point with a Circle or Rectangle or other Polygon (i.e.

diamond or triangle) instead of a Point object. Submit a screen snap-shot or

printout of your figure along with your code. (30 pts)

4. Develop a top-down design to help solve Exercise #6. (10 pts)

5. Use the graphing library to write a program that draws a self-portrait. Submit a

print-out or screen-snapshot of your portrait along with your code. (30 pts)

