
CMSC 120: Visualizing Information
Chapter 4: Sequences

1

REPETITION
By this time, we've had a quite a thorough introduction to many of the niceties of high-
end programming languages that have been careful designed to simplify the programming
process. For example, we've learned that Python has quite a bit of built-in functionality
that minimizes the amount of typing and maximizes the reusability of our code: e.g.,
programs and modules.

Thus we would hope that most of you were frustrated by the repetition involved in the
simple graphics programming done in the prior chapter: having to create, format, and
draw each point individually was most definitely tedious ... and perhaps worrisome.
What if you had had to illustrate 10 points? 100 points? 10,000 points? Would you
have had to type three lines of code for each point in order to produce it on the
screen? That does not seem to be very efficient!

Luckily, Python actually makes it very easy to do repetition so that we don't have to
worry so much about getting repetitive strain syndrome from all of that typing!

Doing repetition in Python is very simple. For example, if you wanted to print out the
digits from 0 to 9, all you have to do is type the following at the prompt:

>>> for i in range(10):

 print i

This is a new type of statement in Python, the for-statement. for is a Python reserve
word and the for-statement one of several types of loop statements, or simply, loops.
Loops are a means for repeating something a fixed number of times. The basic syntax
of a for-loop in Python is:

for <variable> in <sequence>:

 <do something>

 <do something>

 ...

The loop begins with the reserve word for, which is followed by a <variable> that
serves as an index for the loop. The loop index variable is followed by the reserve
word in and a <sequence> followed by a colon (:). This line sets up the number of
times that the repetition will be repeated, or iterated. What follows is a set of
statements, indented that are called a block that forms the body of the loop (stuff that
is repeated).

When the loop is executed, the <variable> is assigned successive values in the
<sequence> and for each of those values, the statements in the body of the loop are
executed. A <sequence> in Python is a list of values. Lists are very important in Python
and we will discuss them more in the next section. For now, notice that we have used
the command range(10) to specify the sequence our loop example.

CMSC 120: Visualizing Information
Chapter 4: Sequences

2

Do this: To see what this command does, start IDLE and enter the following at the
prompt:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The result of entering the range(10) is a list of ten numbers, ranging from 0 to 9.
Notice how the range function returns a sequence of values starting from 0 and going
all the way up to, but not including 10. Thus the variable i in the loop

>>> for i in range(10):

 print i

will take on the values of 0 through 9 and for each of those values it will execute the
print statement. Try it the loop in IDLE. What happens when you change the value
passed to the range function? Give it a try!

IDLE TIP: You can stop a program at any time by pressing the CTRL-C key;
that is, press the CTRL key and C key at the same time.

There are other ways to do repetition in Python and we will explore them at a later
time. For now, let's talk a bit more about sequences.

LISTS
We've actually already played with lists quite a bit and they are more familiar to you
then you know! Every piece of "data" that we've manipulated so far in Pylab has actually
been a sequence, or list!

Do this: Open up and look closely at the DrugData.py file in IDLE. You should see
the following:

As you can see, each piece of data that we have plotted in the DrugData.py file is in fact
a variable to which has been assigned a sequence of values. Each of these sequences is a
list. Lists are a very useful way of collecting a bunch of related information so that it can
be easily stored and manipulated. Python provides a whole hosts of useful operations
for manipulating lists. In Python, a list is any sequence of "things". The "things" can be
anything: numbers, letters, strings, Points, Rectangles, figures, etc. The simplest type of
list you can have is an empty list:

>>> []

[]

CMSC 120: Visualizing Information
Chapter 4: Sequences

3

or

>>> L = []

>>> print L

[]

An empty list does not contain anything. Here are some lists that do contain
information:

>>> N = [2, 43, 6, 27]

>>> FamousNumbers = [3.1415, 2.718, 42]

>>> Cities = ['Philadelphia', 'Hicksville', 'Troy', 'Austin']

>>> MyPoints = [Point(100, 42), Point(75, 64), Point(83, 310)]

>>> MyCar = ['Mazda Protégé', 1999, 'red']

As you can see, a list can be any collection of things, even those that have different data
types. Python provides us with several functions we can use to manipulate these types
of sequences. Below are some examples using the lists defined above:

>>> len(N)

4

>>> N + FamousNumbers

[2, 43, 6, 27, 3.1315, 2.718, 42]

>>> Cities[0]

'Philadelphia'

>>> N[1:3]

[43, 6]

>>> 'Troy' in Cities

True

>>> 'Cairo' in Cities

False

The function len takes a list and returns its length, or the number of objects in the list.
An empty list has zero objects in it. You can also access individual elements in a list
using the indexing operation (as in Cities[0]). The first element in a list has index 0
and the last has element in a list of n elements will have an index of n-1. You can also
use the index operation to get a slice, or sublist, using the index operation (as in
N[1:3], which refers to the sublist containing elements 1 through 2 (one less than 3)).
You can concatenate two lists using the '+' operator, and check whether or not an
object is in the list using the in reserve word.

Besides the above operations, Python also provides some functionality for more
complicated list manipulations. Two useful ones are sort and reverse:

>>> N = [2, 43, 6, 27]

>>> N.sort() # notice that lists are a type of OBJECT!!!

CMSC 120: Visualizing Information
Chapter 4: Sequences

4

[2, 6, 27, 43]

>>> N = [2, 43, 6, 27]

>>> N.reverse()

[27, 6, 43, 2]

>>> N = [2, 43, 6, 27]

>>> N.append(5)

[2, 43, 6, 27, 5]

sort rearranges elements in the list is ascending order and reverse reverses the order
of elements in the list. Another useful method, append, adds a element to the end of
the list.

Remember that all lists are sequences and thus can be used to perform repetitions. For
example, the following:

>>> for point in MyPoints:

 c = Circle(point, 5)

 c.setFill('red')

 c.draw(win)

would draw a red circle centered at each point in the MyPoints list in the GraphWin,
win.

Strings

Strings are also sequences. That is, the string:

ABC = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

is a sequence of 26 letters. You could write a loop that runs through each individual
letter and prints it out:

>>> for letter in ABC:

 print letter

Any of the methods used to manipulate sequences can be applied to strings; for
example, we have already concatenated strings using the '+' operator. Python also
provides special methods for just manipulating strings. The most useful is a function
that converts a string into a list. Say we have a string containing the following sequence:

>>> sentence = 'Would you have any Grey Poupon'

We could convert the sequence into individual words using the split operation:

>>> sentence.split()

['Would', 'you', 'have', 'any', 'Grey', 'Poupon']

CMSC 120: Visualizing Information
Chapter 4: Sequences

5

From now on we will be using lists in many aspects of our Python programming.

THEORY INTO PRACTICE: LABELING IN PYLAB
Now that we know about lists, we can start to use some of the more advanced features
of the Pylab interface. We are not going to get too complicated here, but as you will
see lists are central to the use of the Pylab interface. As stated earlier, most of the
manipulation of data we have done in Pylab has involved the use of lists: every sequence
of data imported from our DrugData.py file has been a list. Thus, the actual syntax of
the plot command, for example is:

plot(<x-sequence>)

or

plot(<x-sequence>, <y-sequence>)

where the x- and y-data are actually lists of int or float values. Similarly, the actual
syntax of the mean command is

mean(<sequence>)

and the function calculates the mean of a list of int or float values.

Besides providing the information to be plotted, lists can also help us improve the
quality of our Pylab visualizations. Remember this figure from Exercise 2, #5?

This visualization would be vastly improved if we could accurately label the ticks on the
x-axis.

Do This: Modify your code for the exercise so that it includes the following list:

CMSC 120: Visualizing Information
Chapter 4: Sequences

6

Labels = ['Marijuana', 'Hallucinogens', 'Cocaine', 'Heroin',

'Cigarettes', 'Alcohol']

Note: the labels should be in the order that you calculated the averages for the ticks to
make sense!!!

Then use the command xticks to place your labels on the ticks along the x-axis as
follows:

xticks(arange(6), Labels)

The xticks command takes two parameters. The first arange(<num-ticks>) is a
function that tells the xticks commands how many ticks are to be labeled. The second
is a list of labels.

Other plotting functions can take sequences of strings to label portions of the figure.
When you come across the keyword argument label as an option that can be
manipulated for a figure, chances are a portion of the figure can be labeled using a list of
strings.

PYTHON REVIEW
Will be filled in later.

PYLAB REVIEW
Will be filled in later.

EXERCISES
1. Write a function that takes an array of quantitative data and the number of classes

into which you would like to subdivide the data and then returns the bin size (or
range of data that falls into each class). Hint:

ClassesofNumber

MinimumMaximum
SizeBin

−
=

Hint: how can you find the maximum or minimum values using just your list
manipulation functions? Test your function using one of the Candidate lists (Bush,
Gore, Nader) in the BallotData.py file. Print the IDLE window that shows the
output of your function.

2. Write a function that takes an list of frequencies and returns a list of relative
frequencies. Hint:

100×=

nsObservatioofNumberTotal

Frequency
FrequencyRelative

Test using either the TechnologyFrequency, CandidateFrequency, or
CountyFrequency data in the BallotData.py file. Print the IDLE window that
shows the output of your function.

CMSC 120: Visualizing Information
Chapter 4: Sequences

7

3. Write a function that takes a bin size and a relative frequency value between 0 and
100 and draws a blue rectangle with a width proportional to bin size and a height
proportional to the relative frequency. Test your function with the following values:
1) bin size = 5, relative frequency = 15; 2) bin size = 30, relative frequency = 78; 3)
bin size = 12, relative frequency = 37. Print the display produced for each test.

4. Choose one of the three candidates in the BallotData.py file (Bush, Nader, or
Gore). Use the hist Pylab command to generate a histogram of the data. As always,
label your axes and title your graph. Save and print the graph. What does this
visualization tell you about the number of votes received per county for this
candidate? Consider both the shape and pattern of the data. For example, is the
histogram symmetrical? Where is the mean? The mode? Are there any outliers?
What do such observations tell you about the voting?

By default, Pylab sets the number of bins to 10. You can change the number of bins
(or classes) by using the bins keyword argument (e.g., hist(<data-sequence>,
bins = <num-bins>)). Produce another histogram using the same candidate data
but set the number of bins equal to 30. Save and print the figure and then again
consider what this visualization tells you about the number of votes received per
county for this candidate (see above). How is the information conveyed by this
figure different from that conveyed by the one with the large bin-size? Repeat the
exercise, but this time set the bin size to 100.

5. Pylab can also be used to produce other types of univariate visualizations. Use the
command pie(<data-sequence>, labels = <label-sequence>) to produce a
pie chart of the Technology data in the BallotData.py file. Title the plot
appropriately and then save and print your graphic. What insight does this
visualization give you into the technology used in the 2000 Florida presidential
election?

6. Write a program that generates three figures. In one figure, the program should

produce a histogram of the CountyFrequency data from the BallotData.py file. In
another figure, it should use a box and whisker plot to illustrate the same data. For
the box and whisker plot, use the sym keyword argument so that the outliers are
visible (i.e., boxplot(<data-sequence>, sym = '+')). In the final figure, the
program should produce a pie-chart of the same data. Each figure should be labeled
appropriately (axes, ticks, and title where relevant). Save all figures using the
savefig method. Compare the three visualizations. What insight, if any, do they
give into the distribution of votes among counties? Are any of the visualizations
more or less effective than others? Why or why not?

