
CMSC 120: Visualizing Information
Flow and Conditions

1

CONTROL FLOW

As we have already discussed, the programs we have been writing are sets of
instructions that are read and processed by the central processing unit (CPU) of the
computer in the order in which they are written. For this reason, the type of
programming that we have been doing is called sequential programming, i.e.,
commands are evaluated and executed in sequence. Sometimes, however, you could
imagine that it might be useful to either execute more than command at the same time
(parallel programming), or execute commands in a sequence other than the one in
which they are written. Because a single CPU can only execute one statement at a time,
your typical desktop computer is only capable of sequential processing (you need more
than one CPU to do parallel processing). However, most computer languages, Python
included provide ways around the limitations of sequential processing that allow us to
control the order (or flow) in which commands are evaluated and executed.

There are three types of control flow statements, two of which we have already seen.
These are Jump or Goto Statements, Loops Statements, and Conditional (or
Branching) Statements.

Jump and Goto are outdated terms from the early days of programming. They basically
refer to commands that tells the program to jump to another line in the code (e.g., in
BASIC, GOTO 102 means go to line 102 of the program and execute the command
written on that line). Most modern programming languages lack these sorts of
statements, and the programming task they accomplished is now done through the use
of functions; i.e., when we invoke a function, we are interrupting the sequential flow of
the program and telling it to "GOTO" the function definition and execute that code
block before returning to the main flow.

As we have already seen, with for-statements, loops provide another means of
controlling the flow of the program. They tell the program to repeat a block of code
some number of times before returning to the usual sequential flow of the program.
for-statements are only one of several types of loops; we will introduce another one
below.

When we first started to discuss computing, we learned that a computer's processor
can do three types of operations: it can add 0, it can add 1, and it can compare zeros to
ones and see if they are the same or different. It is this third type of operation that
differentiates a computer from a simple adding machine: a computer both adds and uses
comparisons to make decisions. Thus, making simple decisions is an important part of
computer programming. Conditional or branching statements allow us change the
flow of the program based upon such decisions, i.e., they basically create fork in the path
of our sequential program, and allow the programmer to redirect the flow of the
program depending on whether or not certain conditions are met.

RUNNING AROUND IN CIRCLES: MORE LOOPS

CMSC 120: Visualizing Information
Flow and Conditions

2

We have already learned that repetition is one of the key concepts in computing. For
example, we could use repetition to compute the world’s population in ten years by
repeatedly computing values for successive years:

for year in range(10):

 population = population * (1 + growthRate)

That is, repeatedly add the increase in population, based upon a rate of growth, ten
times.

Do This: Write a module that implements the above
code block as a program and name it worldPop.py.
Modify the program so that it requests the user to
input the current population, growth rate, and
number of years to project ahead and computes the
resulting total population size. Run your program on
several different values (Google: “world population
growth” to latest numbers). Can you estimate when
the world will have a population size of 9 billion?

Another way of doing the same thing is to use the a
different kind of loop, a while loop as follows:

year = 0

while year < 10:

 population = population * (1 + growthRate)

 year = year + 1

This loop illustrates a new type of statement, the while-statement. Its general form is
as follows:

while <some condition is true>:

 <do something>

That is, you can specify any condition in <some condition is true>. The
condition is tested and if it results in a True value, the step(s) specified in the body of
the loop (<do something>) is/are performed. Then the condition is tested again, and
as long it remains True, the loop will continue to repeat. In the example above, we use
the following condition:

year < 10

If the above example condition is true, it implies that year is less than 10. If it is false, it
implies that year is greater than or equal to 10 and evaluating the condition results in a
False value, and the loops stops.

Do This: By this time you have
been introduced to the rules of
naming in Python. You may have
noticed that we have made
extensive use of mixed case in
naming some entities. For example,
growthRate. There are several
naming conventions used by
programmers and that has led to an
interesting culture in of itself. Look
up the phrase CamelCase Controversy
in your favorite search engine to
learn about naming conventions. For
an interesting article on this, see
The Semicolon Wars

CMSC 120: Visualizing Information
Flow and Conditions

3

You have now seen how to write programs that have commands that can be repeated a
fixed number of times or for a certain duration:

do something N times

for step in range(N):

 do something...

do something for some duration

while <waiting for condition>:

 do something...

do something for some duration

value = <initialState>

while value < finalState:

 do something...

We can also write loops that repeat forever:

do something forever

while True:

 do something...

All of the above are useful in different situations. Sometimes it becomes a matter of
personal preference; i.e., if while-loops make more sense to you, there is no reason
not to use them instead of a for-loop!

Do this: Write a for-loop that prints out the numbers from 0 to 10 to the IDLE
window. Now write a while-loop that does the same. Where is the indexing variable in
the for-statement? Does the while-statement have an equivalent variable (i.e., one
that keeps track of how many times the loop is being repeated)? In these two types of
loops, what is the difference between how we define the starting condition, stopping
condition, and increment of the value of the indexing variable?

EVALUATING CONDITIONS

As you can see from the above examples, learning about writing conditions is essential
to writing more sophisticated programs. Any decision making in your programs depends
on forming appropriate conditional expressions.

The first thing to realize is that all conditions result in either of two values: True or
False. As we learned in Chapter 2, variables that have these values have a Boolean
data type. Most programming languages allow you to substitute the integer values of 1
and 0 for the Booleans True and False, respectively. In Python, the values False,
None, 0, 0.0, and empty strings and lists are interpreted as false. All other values are
true.

CMSC 120: Visualizing Information
Flow and Conditions

4

Boolean values can be used just like numbers in your programs. However, remember
that the type of a value determines that kinds of operations that can be performed on
the value. Because Booleans are logical data types (True, False), they can be
manipulated with two types of operators: logical and relational. For example, simple
conditions can be written using comparisons (relational) operations: < (less than), <=
(less than or equal to), > (greater than), >= (greater than or equal to), == (equal to),
and != (not equal to). These operations can be used to compare all kinds of values.
Here are some examples:

>>> 42 > 23

True

>>> 42 < 23

False

>>> 42 == 23

False

>>> 42 != 23

True

>>> (42 + 23) < 100

True

>>> a, b, c = 10, 20, 10

>>> a == b

False

>>> a == c

True

>>> a == a

True

>>> True == 1

True

>>> False == 1

False

The last two examples above also show how the values True and False are related to
1 and 0. True is the same as 1 and 0 is the same as False. You can form many useful
conditions using the comparison operations and all conditions result in either a True or
False when evaluated.
 True is the same as 1 and 0 is the same as False. You

can also compare other types of values, like strings:

>>> 'Hello' == 'Good Bye'

False

>>> 'Hello' != 'Good Bye'

True

>>> 'Elmore' < 'Elvis'

True

>>> 'New York' < 'Paris'

True

>>> 'A' < 'B'

True

>>> 'a' < 'A'

Unicode

Text characters have an computer

coding or representation that

enforces lexicographic ordering.

This internal encoding is very

important in the design of

computers and this is what enables

all computers and devices like

iPhones etc. to exchange

information consistently. All

language characters in the world

have been assigned a standard

computer encoding. This is called

Unicode.

CMSC 120: Visualizing Information
Flow and Conditions

5

False

Study the above examples carefully, there are two important things to notice First,
strings are compared in alphabetical order (i.e., lexicographically). Thus 'Elmore' is
less than 'Elvis', since 'm' is less than 'v'. Second, is that uppercase letters are
less than their equivalent lowercase letters. This is by design (see box).

Besides relational operators, you can build more complex conditional expressions using
the logical operations (also called Boolean operations): and, or, not. Here are some
examples:

>>> (5 < 7) and (8 > 3)

True

>>> not ((5 < 7) and (8 > 3))

False

>>> (6 > 7) or (3 > 4)

False

>>> (6 > 7) or (3 > 2)

True

We can define the meaning of these logical operators as follows:

• <expression-1> and <expression-2>: Such an expression will result in a
value True only if both <expression-1> and <expression-2> are True.
In all other cases (i.e., if either one or both of <expression-1> and <expression-
2> are False) it results in False.

• <expression-1> or <expression-2>: Such an expression will result in a
value True if either or both <expression-1> and <expression-2> are
True. In all other cases (i.e., if either both <expression-1> and <expression-2>
are False) it results in False.

• not <expression>: Such an expression will result in a value True if

<expression> if False or True if <expression> is False. In other
words, it flips or complements the value of <expression>.

Logical operators can be combined with relational expressions to form arbitrarily
complex conditional expressions. These operators were invented by the logician,
George Boole in the mid-19th century. Boolean algebrea (and hence the Boolean data
type), named after Boole, defines some simple, but important logical laws that govern
the behavior of logical operators. The following are some useful ones:

• (A or True) is always True.

• (not (not A)) is just A
• (A or (B and C)) is the same as ((A or B) and (A or C))

• (A and (B or C)) is the same as ((A and B) or (A and C))
• (not (A or B)) is the same as ((not A) and (not B))

CMSC 120: Visualizing Information
Flow and Conditions

6

• (not (A and B)) is the same as ((not A) or (not B))

These identities, or properties, can help you simplify expressions and increase the
readability of your code.

Conditional expressions can be used to write several useful conditions to control the
execution of some program statements. We have already seen conditional repetitions:

while <some condition is True>:

 do something...

And we can understand why the following is a way of saying "do something forever":

while True:

 do something...

Since the condition is always True, the statements will be repeated forever. Similarly

in the loop below:

year = 0

while year < 10:

 population = population * (1 + growthRate)

 year = year + 1

As soon as year equals 10, the value of the condition year < 10 will become False

and the repetition will stop. Controlling repetitions based upon conditions is a powerful

idea in computing.

EXERCISES

1. Complete the following truth tables (10 pts):

A B not A A and B A or B A == B

True True

True False

False True

False False

A B A != B A >= B A < B A == B

1 1

1 0

0 1

0 0

'Amy' 'Amelia'

'L' 'l'

CMSC 120: Visualizing Information
Flow and Conditions

7

2. If you have not yet, create a program that executes the world population example

using the while-loop version and allows the user to specify values for all values (as
suggested in the text). Considering what you have learned, try the following and
explain the resulting behavior: (20 pts)

a. Use the values 900000000 and 1.42 as input values. Enter them in any
order (i.e., don’t be concerned about to which variable (pop size or
growth rate) you are assigning the value). What happens?

b. For any values to be input, enter a string when prompted for a number.
What happens?

c. Modify your world population program so that it repeats as long as the
population size is below 9 billion. Have your program output the year by
which the world’s population would exceed that threshold. For extra
credit, modify your program so that the user can specify the population
limit.

3. Other than Pylab and the graphics library there are many other libraries that we can

import into our Python programs to increase functionality. One such library is the
time library. Import it as you would any other library or module: (20 pts)

>>> from time import *

The time library allows us to access the current date and time stored on the
computer. It does so through a function that called localtime that works as
follows:

>>> localtime()

(2008, 3, 27, 12, 33, 16, 3, 87, 1)

localtime returns all of the following in order:

1. year
2. month
3. day
4. hour
5. minute
6. seconds
7. weekday
8. day of the year
9. whether it is daylight savings time or not

In the example above, it is March 27, 2008 at 12:33 pm and 16 seconds. It is also the
3rd day of the week, 87th day of the year, and we are using daylight savings time. You
can assign each the values to named variables with the following syntax:

year, month, day,…, dayOfWeek = localtime()

CMSC 120: Visualizing Information
Flow and Conditions

8

Then, for the example above the variable year will have the value 2008, the month
will have 3, etc.

Do the following:

a. Write a program that prints out the current date and time in the format
illustrated above (March 27, 2008 at 12:33 pm and 16 seconds)

b. Write a program that starts at a value at zero and increments it by one
for 2 minutes. What is the result of the calculation? Move to a different
computer and run your program again. Did you come up with the same
result? Try your program on at least 5 different computers. Are the
results the same? Why or why not?

