
CMSC 120: Visualizing Information
Chapter 6: Making Decisions

1

A SLIGHT DETOUR: RANDOM WALKS
One way you can do interesting things with a program is to introduce some randomness
into the mix. Python, and most programming languages, typically provide a library for
generating random numbers. Generating random numbers is an interesting process in
itself but we will save that discussion for a later time. Random numbers are very useful
in all kinds of computer applications, especially games and in simulating real life
phenomena. In order to access the random number generating functions in Python you
have to import the random library:

from random import *

There are lots of features available in this library but we will restrict ourselves with just
two functions for now: random and randrange. These are described below:

• random(): returns a random number between 0.0 and 1.0.

• randrange(A, B): returns a random number in the range [A…B-1].

Here is a sample IDLE window illustrating the use of these two functions:

Do This: When we first learned about graphics and drawing we learned that
several colors have been assigned names that can be used to select colors. You can
also create colors of your own by specifying their red, green, and blue values. Each
color is made up of 3 values, called RGB or red, green, and blue color values. Each
of these values in the in the range 0..255 and is called a 24 bit color value (why?).
With this scheme, the color with the values (255, 255, 255) (i.e., red = 255, green =
255, and blue = 255) is white; (255, 0, 0) is pure red, (0, 255, 0) is pure blue, (0, 0,
0) is black, (255, 175, 175) is a pink, etc. You can have as many as 256 x 256 x 256

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

2

colors (i.e., over 16 million colors!). Given specific RGB values, you may create any

new color using the graphics library command color_rgb:

myColor = color_rgb(255, 175, 175)

We will be talking about colors a lot more over the next few weeks, but for now, just
try it out (and the random number generator) by examining and implementing the
program below:

Program to draw a bunch of random colored circles

Required Libraries

from random import randrange

from graphics import *

creates a Circle centered at point (x, y) of radius

def makeCircle(x, y, r):

 return Circle(Point(x, y), r)

creates a new color using random RGB values

def makeColor():

 red = randrange(0, 256)

 green = randrange(0, 256)

 blue = randrange(0, 256)

 return color_rgb(red, green, blue)

Create and display a graphics

def main():

 width = 500

 height = 500

 myWindow = GraphWin('Circles', width, height)

 myWindow.setBackground('white')

draw a bunch of random circles with random colors.

N = 500

for i in range(N):

pick random center point and radius in the window

x = randrange(0,width)

y = randrange(0,height)

r = randrange(5, 25)

c = makeCircle(x, y, r)

select a random color

c.setFill(makeColor())

draw the circle

c.draw(myWindow)

main()

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

3

BUILDING BIGGER PROGRAMS: SCOPE
Notice our use of functions to organize the circle program. From a design perspective,
the two functions makeCircle and makeColor are written differently. This is just for
illustration purposes. You could, for instance, define makeCircle just like makeColor
so it doesn’t take any parameters and generates the values of x, y, and radius as follows:

def makeCircle():

 # creates a Circle centered at point (x, y) of radius r

 x = randrange(0,width)

 y = randrange(0,height)

 r = randrange(5, 25)

 c = makeCircle(x, y, r)

return Circle(Point(x, y), r)

Unfortunately, as simple as this change seems, the function is not going to work. In
order to generate the values of x, and y it needs to know the width and height of the
graphics window. But width and height are defined in the function main and are not
available or accessible in the function above. This is an issue of scope of names in a
Python program: what is the scope of accessibility of a name in a program?

Python defines the scope of a name in a program textually or lexically. That is, any name
is visible in the text of the program/function after it has been defined. Note that the
notion of after is a textual notion. Moreover, Python restricts the accessibility of a name
to the text of the function in which it is defined. That is, the names width and height are
defined inside the function main and hence they are not visible anywhere outside of
main. Similarly, the variables red, green, and blue are considered local to the
definition of makeColor and are not accessible outside of the function, makeColor.
So how can makeCircle, if you decided it would generate the x and y values relative
to the window size, get access to the width and height of the window? There are two
solutions to this. First, you can pass them as parameters. In that case, the definition of
makeCircle will be:

def makeCircle(w, h):

creates a Circle centered at point (x, y) of radius r

such that (x, y) lies within width, w and height, h

x = randrange(0,w)

y = randrange(0,h)

r = randrange(5, 25)

c = makeCircle(x, y, r)

return Circle(Point(x, y), r)

Then the way you would use the above function in the main program would
be using the command:

C = makeCircle(width, height)

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

4

That is, you pass the values of width and height to makeCircle as parameters.
The other way to define makeCircle would be exactly as shown in the first instance:

def makeCircle():

 # creates a Circle centered at point (x, y) of radius r

 x = randrange(0,width)

 y = randrange(0,height)

 r = randrange(5, 25)

 c = makeCircle(x, y, r)

 return Circle(Point(x, y), r)

However, you would move the definitions of width and height outside and before the
definitions of all the functions:

from graphics import *

from random import randrange

width = 500

height = 500

def makeCircle(x, y, r):

…

def makeColor():

…

def main():

…

Since the variables are defined outside of any function and before the definitions of the
functions that use them, you can access their values. You may be wondering at this
point, which version is better? Or even, why bother? The first version was just as good.
The answer to these questions is similar in a way to a paragraph is an essay. You can
write a paragraph in many ways. Some versions will be more preferable than others. In
programming, the rule of thumb one uses when it comes to the scope of names is:
ensure that only the parts of the program that are supposed to have access to a name
are allowed access. This is similar to the reason you would not share your password
with anyone, or your bank card code, etc. In our second solution, we made the names
width and height globally visible to the entire program that follows. This implies
that even makeColor can have access to them whether it makes it needs it or not.

You may want to argue at this point: what difference does it make if you make those
variables visible to makeColor as long as you take care not to use them in that
function? You are correct, it doesn’t. But it puts an extra responsibility on your part to
ensure that you will not do so. But what is the guarantee that someone who is
modifying your program chooses to? We used the simple program here to illustrate
simple yet potentially hazardous decisions that dot the landscape of programming like
land mines.

Programs can crash if some of these names are mishandled in a program. Worse still,
programs do not crash but lead to incorrect results. However, at the level of deciding

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

5

which variables to make local and which ones to make global, the decisions are very
simple and one just needs to exercise safe programming practices.

MAKING DECISIONS
There is a famous theorem in computer science that says that if a device is capable of
being programmed to do sequential execution, decision making, and repetition, it is capable
of expressing any computable algorithm. This is a very powerful idea that is
encapsulated in terms of very simple ideas. In other words, the theorem argues that, if
you can describe a solution to a problem in terms of a combination of those three
executable models then you can get a computer to solve that problem! We have
already looked at two of the three models (sequential execution and repetition). Now
it is time to look at decision making!

Let's Talk About This, That, and The Other

The overall goal of decision making is to alter the flow of a program by conditionally
controlling the execution of a set of commands based upon whether or not a condition
is met. The simplest way to do this is through the use of an if-statement. For
example, the following statement compares two numbers and prints the value of a if it is
larger:

if (a > b):

 print a

In the above code block, we are also introducing another type of control flow
statement, the if-statement. This statement enables simple decision making inside
computer programs. The simplest form of the if-statement has the following structure:

if <CONDITION>:

 <do something>

 <do something>

 ...

That is, if the condition specified by <CONDITION> is True, then whatever is specified
in the body of the if-statement is carried out. In case the <condition> is False, all
the statements under the if command are skipped over.

The if-statement is a way of making simple decisions (also called one-way decisions).
That is, you can conditionally control the execution of a set of commands based on a
single condition. The if-statement is Python is quite versatile and can be used to make
two-way or even multi-way decisions. Here is how you would use it to choose among
two sets of commands (i.e., create branch or fork in the program):

if <condition>:

 <this>

else:

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

6

 <that>

That is, if the <condition> is true it will do the commands specified in <this>. If,
however, the <condition> is false, it will do <that>. For example, the following
function compares two numbers and returns the larger of the two:

def findMax(a, b):

 if (a > b):

 return a

 else:

 return b

Similarly, you can extend the if-statement to help specify multiple options:

if <condition-1>:

 <this>

elif <condition-2>:

 <that>

elif <condition-3>:

 <something else>

...

...

else:

 <other>

Notice the use of the word elif (yes, it is spelled that way!) to designate 'else if'.
Thus, depending upon whichever condition is true, the corresponding <this>, <that>,
or <something else> will be carried out. If all else fails, the <other> will be
carried out.

DECISION MAKING IN PRACTICE: ROCK, PAPER, SCISSORS!
Let's look at decision making in a bit more detail by exploring a classic game playing
situation: Rock, Paper, Scissors!

In this game, two players play against each other. At the count of three, each player
makes a hand gesture indicating that they have selected one of the three items: paper
(the hand is held out flat), scissors (two fingers are extended to designate scissors, or
rock (indicated by making a fist). The rules of deciding the winner are simple: if both
players pick the same object it is a draw; otherwise, paper beats rock, scissors beat
paper, and rock beats scissors. Let us write a computer program to pay this game
against the computer. Here is an outline for one round of the game:

Computer and player make a selection

Decide outcome of selections (draw or who won)

Inform player of decision

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

7

If we represent the three items in a list, we can have the computer pick one of them at
random by using the random number generation facilities provided in Python. For
example, if the items are represented as:

items = ['Rock', 'Paper', 'Scissors']

Then we can select any of the items above as the computer's choice using the following
statement:

Computer makes a selection

myChoice = items[<0 or 1 or 2 selected randomly>]

That is items[0] represents the choice 'Rock', items[1] represents 'Paper',
and items[2] is 'Scissors'.

As explained in the previous section, a random number in any range can be generated
using the randrange function from the random library module in Python. Thus we
can model the computer making a random selection using the following code block:

from random import randrange

Computer makes a selection

myChoice = items[randrange(0, 3)]

Recall that randrange(n, m) returns a random numbers in the range [n..m1].
Thus, randrange(0, 3) will return either 0, 1, or 2. And the computer has
successfully chosen whether it is going to play a Rock, Paper, or Scissors.

But Rock, Paper, Scissors is a two player game and so now, it is the user's turn. We
can use the input command to ask the player to indicate his/her selection. :

Player makes a selection

yourChoice = input('Please enter Rock, Paper, or Scissors: ')

Now that we know how to the computer and player make their selection, we need to
think about deciding the outcome. Here is an outline:

if both picked the same item then it is a draw

if computer wins then inform the player

if player wins then inform the player

Rewriting the above algorithm in Python using if-statements we can come up with a
pseudocode first draft:

if myChoice == yourChoice:

 print 'It is a draw.'

if <myChoice beats yourChoice>:

 print 'I win.'

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

8

else:

 print 'You win.'

Now all we need to do is figure out how to write the condition <myChoice beats

yourChoice>.

The condition has to capture the rules of the game mentioned above. We can encode
all the rules in a conditional expression as follows:

if (myChoice == 'Paper' and yourChoice == 'Rock')or

(myChoice == 'Scissors' and yourChoice == 'Paper')or

(myChoice == 'Rock' and yourChoice == 'Scissors'):

print 'I win.'

else:

 print 'You win.'

The conditional expression above captures all of the possibilities that should be
examined in order to make the decision. But it is a little confusing. We could write this
another way, that takes more lines of code but is a bit more readable:

if myChoice == 'Paper' and yourChoice == 'Rock':

 print 'I win.'

elif myChoice == 'Scissors' and yourChoice == 'Paper':

print 'I win.'

elif myChoice == 'Rock' and yourChoice == 'Scissors':

print 'I win.'

else:

print 'You win.'

That is each condition is examined in turn until one is found that confirms that the
computer wins. If none such condition is true, the else-part of the if-statement will
be reached to indicate that the player won.

Another alternative to writing the decision above is to encode the decision in a function.
Let us assume that there is a function beats that returns True or False depending on
the choices. We could then rewrite the above as follows:

if myChoice == yourChoice:

 print 'It is a draw.'

if beats(myChoice, yourChoice):

 print 'I win.'

else:

 print 'You win.'

Let us take a closer look at how we could define the beats function. It needs to return
True if myChoice beats yourChoice. So all we need to do is encode the rules of the
game described above. Here is a draft of the function:

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

9

Does me beat you? If so, return True, False otherwise.

def beats(me, you):

 if me == 'Paper' and you == 'Rock':

 # Paper beats rock

 return True

 elif me == 'Scissors' and you == 'Paper':

 # Scissors beat paper

 return True

 elif me == 'Rock' and you == 'Scissors':

 # Rock beats scissors

 return True

 else:

 return False

Once again, we have used the if-statements in Python to encode the rules of the game.
Now that we have completely fleshed out all the critical parts of the program, we can
put them all together as shown below:

A program that plays the game of Rock, Paper, Scissors!

from random import randrange

Does me beat you? If so, return True, False otherwise.
def beats(me, you):

if me == 'Paper' and you == 'Rock':

Paper beats rock

return True

elif me == 'Scissors' and you == 'Paper':

Scissors beat paper

return True

elif me == 'Rock' and you == 'Scissors':

Rock beats scissors

return True

else:

return False

def main():# Play a round of Rock, Paper, Scissors!

 print 'Let us play Rock, Paper, Scissors!'

 # define items

 items = ['Rock', 'Paper', 'Scissors']

 # Computer and Player make their selection...
 # Player makes a selection

yourChoice = input('Please enter Rock, Paper, or Scissors: ')

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

10

Computer makes a selection

myChoice = items[randrange(0, 3)]

inform Player of choices

print 'I picked', myChoice

print 'You picked', yourChoice

Decide if it is a draw or a win for someone

if myChoice == yourChoice:

print 'We both picked the same thing.'

print 'It is a draw.'

elif beats(myChoice, yourChoice):

print 'Since', myChoice, 'beats', yourChoice, '...'

print 'I win.'

else:

print 'Since', yourChoice, 'beats', myChoice, '...'

print 'You win.'

print 'Thank you for playing. Bye!'

main() # invoke the program

A few more print commands were added to make the interaction more natural.

EXERCISES

1. Implement and modify the Rock, Paper, Scissors program above and play it
several times to make sure you understand it completely. Modify the program
so that it plays several rounds and the user is able to choose when to stop
playing. Implement a scoring system that keeps track of the number of times
each player has won and the number of draws. When the user is done playing,
report the score. 15 pts.

For the following questions: make all changes to the histogram.py file that is
downloadable from the course website. Submit your final version (i.e., what you have
after completing #5) as the answer to question 2 – 5.

Download the histogram.py file from the website. This file provides a template for
the large-scale histogram program that we are be writing. Examine the file closely.

Make sure you understand the main() program:

Line 1: def main():

Line 2: # IMPORTANT VALUES

Line 3: # data set

Line 4: data = [<a really long list of values here...>]

Line 5: # distance axes are offset from edge of window

Line 6: axesOffset = 20

Line 7: # prompt user for number of bins

Line 8: numBins = input('Please enter number of bins: ')

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

11

Line 9: binSize = calcBinSize(data, numBins) # calculate bin size

Line 10: xLength = numBins * binSize # the length of the x-axis

Line 11: # Create the Window

Line 12: # Draw the Axes

Line 13: # Calculate Frequency Data

Line 14: # Print Frequency Data to Screen

Line 1: main() # invoke main

Please note the following: in the histogram.py file, Line 4 defines a long list of values,
or the data with which we will be working. Line 9 calls the function that you wrote to
calculate the size of a bin. You will cut and paste that code into the histogram file (see
Exercise 2). Please modify you functions as necessary to match the naming conventions
and order of parameters listed in def-statement for each in the histogram.py file.
This will make it easier to assemble the whole program. Lines 11 -14 are place markers
indicating modifications to the program you will make when completing Exercises 3 – 5.
As you build your histogram program, keep in mind the issue of scope and how
information is passed from one part of the program to another.

2. Copy and paste the functions we have already completed: finding bin sizes

(calcBinSize), drawing a bar (drawBar), and calculating relative frequency
data (calcRelFreq). If you were unable to solve these problems on your own,
please feel free to use the solutions from the key.

3. Fill in the createWindow function. (6 pts)

The function should do the following:

a. Create a graphics window that is 640 x 480 pixels. The title of the
window should be ‘My Histogram’.

b. Make the background of the window white.
c. Sets the coordinate system so that it is easy to draw (i.e., lower left is

(0,0)). The upper right should have a height of the window is 100 + 2 *
offset (why?) and a width of the xLength + 2 * offset.

4. Fill in the drawAxes function so that the x- and y-axes are drawn. Make sure
to offset the axes from the edge of the window (see figure below). Make the

line widths = 2. Update your main() program so that it executes the
createWindow and drawAxes functions. (6 pts)

When you run the program and enter any value for the number of bins, the
program should produce the following graphic:

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

12

5. Fill in the calcFrequency function. This function should take the raw data and
calculate and return frequency data. A variable, data has been defined in the

main() program that you can use as an argument to the function.

Below are points that we highlighted in our class discussion.

HINT: The frequency of a bin = count of number of observations that fall into
the bin.

HINT: For the purpose of this exercise, a value is in a bin if the value >= binMin
and value < binMax, where binMin and binMax are the lower and upper ranges of
the bin, respectively.

HINT: binMin of the first bin is the minimum value in the list.

HINT: binMax = binMin + binSize

HINT: The algorithm we came up with in class is listed below. Please note that
that some of these tasks may involve multiple steps and that there may be steps
you need to take that are not explicitly listed (e.g., setting initial values for your
loops, updating values of binMin and binMax as you iterate through the bins).

1. Create an empty list of zeros to store frequencies calculated

for each bin

2. For each bin do the following:
a. For each value in the data list do the following:

i. check to see if the value is in the current bin

1. if it is, add one to the frequency count for
the current bin

3. Return the list of frequencies

CMSC 120: Visualizing Information
Chapter 6: Making Decisions

13

Modify the main() program so that it calculates and prints out the frequency of

the variable data. Run your program and test for 5, 10, and 20 bins. You
should get the following:

5 Bins:[31, 19, 16, 22, 12]

10 Bins:[13, 18, 7, 12, 11, 5, 6, 16, 6, 6]

20 Bins:[7, 10, 8, 4, 3, 6, 6, 7, 4, 5, 0, 6, 0, 10, 6, 1, 5, 4, 2]

(25 pts)

