A Slight Detour: Random Walks

One way you can do interesting things with a program is to introduce some randomness into the mix. Python, and most programming languages, typically provide a library for generating random numbers. Generating random numbers is an interesting process in itself but we will save that discussion for a later time. Random numbers are very useful in all kinds of computer applications, especially games and in simulating real life phenomena. In order to access the random number generating functions in Python you have to import the random library:
from random import *

There are lots of features available in this library but we will restrict ourselves with just two functions for now: random and randrange. These are described below:

· random(): returns a random number between 0.0 and 1.0.

· randrange(A, B): returns a random number in the range [A…B-1].

Here is a sample IDLE window illustrating the use of these two functions:

[image: image1.jpg]
Do This: When we first learned about graphics and drawing we learned that several colors have been assigned names that can be used to select colors. You can also create colors of your own by specifying their red, green, and blue values. Each color is made up of 3 values, called RGB or red, green, and blue color values. Each of these values in the in the range 0..255 and is called a 24 bit color value (why?). With this scheme, the color with the values (255, 255, 255) (i.e., red = 255, green = 255, and blue = 255) is white; (255, 0, 0) is pure red, (0, 255, 0) is pure blue, (0, 0, 0) is black, (255, 175, 175) is a pink, etc. You can have as many as 256 x 256 x 256 colors (i.e., over 16 million colors!). Given specific RGB values, you may create any new color using the graphics library command color_rgb:

myColor = color_rgb(255, 175, 175)

We will be talking about colors a lot more over the next few weeks, but for now, just examine the program below:

Program to draw a bunch of random colored circles
required libraries

from random import *

from graphics import *

creates a Circle centered at point (x, y) of radius

def makeCircle(x, y, r):

return Circle(Point(x, y), r)

creates a new color using random RGB values

def makeColor():

red = randrange(0, 256)

green = randrange(0, 256)

blue = randrange(0, 256)

return color_rgb(red, green,blue)

Create and display a graphics

def main():

 width = 500

 height = 500

 myWindow = GraphWin('Cicrles', width, height)

 myWindow.setBackground('white')

draw a bunch of random circles with random colors.

N = 500
for i in range(N):

pick random center point and radius in the window

x = randrange(0,width)

y = randrange(0,height)

r = randrange(5, 25)

c = makeCircle(x, y, r)

select a random color

c.setFill(makeColor())

draw the circle

c.draw(myWindow)

main()

Making Decisions
There is a famous theorem in computer science that says that if a device is capable of being programmed to do sequential execution, decision making, and repetition, it is capable of expressing any computable algorithm. This is a very powerful idea that is encapsulated in terms of very simple ideas. In other words, the theorem argues that, if you can describe a solution to a problem in terms of a combination of those three executable models then you can get a computer to solve that problem! We have already looked at two of the three models (sequential execution and repetition). Now it is time to look at decision making!

Let's Talk About This, That, and The Other

The overall goal of decision making is to alter the flow of a program by conditionally controlling the execution of a set of commands based upon whether or not a condition is met. The simplest way to do this is through the use of an if-statement. For example, the following statement compares two numbers and prints the value of a if it is larger:

if (a > b):
 print a

In the above code block, we are also introducing another type of control flow statement, the if-statement. This statement enables simple decision making inside computer programs. The simplest form of the if-statement has the following structure:

if <CONDITION>:

 <do something>

 <do something>

 ...
That is, if the condition specified by <CONDITION> is True, then whatever is specified in the body of the if-statement is carried out. In case the <condition> is False, all the statements under the if command are skipped over.

The if-statement is a way of making simple decisions (also called one-way decisions). That is, you can conditionally control the execution of a set of commands based on a single condition. The if-statement is Python is quite versatile and can be used to make two-way or even multi-way decisions. Here is how you would use it to choose among two sets of commands (i.e., create branch or fork in the program):
if <condition>:

 <this>

else:

 <that>
That is, if the <condition> is true it will do the commands specified in <this>. If, however, the <condition> is false, it will do <that>. For example, the following function compares two numbers and returns the larger of the two:

def findMax(a, b):

 if (a > b):

 return a

 else:

 return b
Similarly, you can extend the if-statement to help specify multiple options:
if <condition-1>:

 <this>

elif <condition-2>:

 <that>

elif <condition-3>:

 <something else>

...

...

else:

 <other>
Notice the use of the word elif (yes, it is spelled that way!) to designate 'else if'. Thus, depending upon whichever condition is true, the corresponding <this>, <that>, or <something else> will be carried out. If all else fails, the <other> will be carried out.
Decision Making in Practice: Rock, Paper, Scissors!

Let's look at decision making in a bit more detail by exploring a classic game playing situation: Rock, Paper, Scissors!

In this game, two players play against each other. At the count of three, each player makes a hand gesture indicating that they have selected one of the three items: paper (the hand is held out flat), scissors (two fingers are extended to designate scissors, or rock (indicated by making a fist). The rules of deciding the winner are simple: if both players pick the same object it is a draw; otherwise, paper beats rock, scissors beat paper, and rock beats scissors. Let us write a computer program to pay this game against the computer. Here is an outline for one round of the game:
Computer and player make a selection
Decide outcome of selections (draw or who won)
Inform player of decision
If we represent the three items in a list, we can have the computer pick one of them at random by using the random number generation facilities provided in Python. For example, if the items are represented as:
items = ['Paper', 'Scissors', 'Rock']

Then we can select any of the items above as the computer's choice using the following statement:

Computer makes a selection
myChoice = items[<0 or 1 or 2 selected randomly>]

That is items[0] represents the choice 'Paper', items[1] represents 'Scissors', and items[2] is 'Rock'.

As explained in the previous section, a random number in any range can be generated using the randrange function from the random library module in Python. Thus we can model the computer making a random selection using the following code block:
from random import *

Computer makes a selection
myChoice = items[randrange(0, 3)]
Recall that randrange(n, m) returns a random numbers in the range [n..m1]. Thus, randrange(0, 3) will return either 0, 1, or 2. And the computer has successfully chosen whether it is going to play a Rock, Paper, or Scissors.

But Rock, Paper, Scissors is a two player game and so now, it is the user's turn. We can use the input command to ask the player to indicate his/her selection. :

Player makes a selection
yourChoice = input('Please enter Rock, Paper, or Scissors: ')

Now that we know how to the computer and player make their selection, we need to think about deciding the outcome. Here is an outline:

if both picked the same item then it is a draw
if computer wins then inform the player
if player wins then inform the player

Rewriting the above algorithm in Python using if-statements we can come up with a pseudocode first draft:
if myChoice == yourChoice:

 print 'It is a draw.'

if <myChoice beats yourChoice>:
 print 'I win.'

else:
 print 'You win.'
Now all we need to do is figure out how to write the condition <myChoice beats yourChoice>.
The condition has to capture the rules of the game mentioned above. We can encode all the rules in a conditional expression as follows:

if (myChoice == 'Paper' and yourChoice == 'Rock')or (myChoice == 'Scissors' and yourChoice == 'Paper')or (myChoice == 'Rock' and yourChoice == 'Scissors'):

print 'I win.'
else:
 print 'You win.'

The conditional expression above captures all of the possibilities that should be examined in order to make the decision. But it is a little confusing. We could write this another way, that takes more lines of code but is a bit more readable:

if myChoice == 'Paper' and yourChoice == 'Rock':

 print 'I win.'

elif myChoice == 'Scissors' and yourChoice == 'Paper':
print 'I win.'
elif myChoice == 'Rock' and yourChoice == 'Scissors':
print 'I win.'
else:
print 'You win.'

That is each condition is examined in turn until one is found that confirms that the computer wins. If none such condition is true, the else-part of the if-statement will be reached to indicate that the player won.
Another alternative to writing the decision above is to encode the decision in a function. Let us assume that there is a function beats that returns True or False depending on the choices. We could then rewrite the above as follows:
if myChoice == yourChoice:
 print 'It is a draw.'
if beats(myChoice, yourChoice):
 print 'I win.'
else:
 print 'You win.'

Let us take a closer look at how we could define the beats function. It needs to return True if myChoice beats yourChoice. So all we need to do is encode the rules of the game described above. Here is a draft of the function:

Does me beat you? If so, return True, False otherwise.
def beats(me, you):
 if me == 'Paper' and you == 'Rock':

 # Paper beats rock
 return True

 elif me == 'Scissors' and you == 'Paper':

 # Scissors beat paper
 return True
 elif me == 'Rock' and you == 'Scissors':
 # Rock beats scissors
 return True

 else:
 return False

Once again, we have used the if-statements in Python to encode the rules of the game. Now that we have completely fleshed out all the critical parts of the program, we can put them all together as shown below:
A program that plays the game of Paper, Scissors, Rock!
from random import randrange

Does me beat you? If so, return True, False otherwise.
def beats(me, you):

if me == 'Paper' and you == 'Rock':
Paper beats rock
return True

elif me == 'Scissors' and you == 'Paper':
Scissors beat paper
return True

elif me == 'Rock' and you == 'Scissors':
Rock beats scissors
return True

else:
return False

def main():# Play a round of Rock, Paper, Scissors!
 print 'Lets play Rock, Paper, Scissors!'
 # define items

 items = ['Rock', 'Paper', 'Scissors']

 # Computer and Player make their selection...
 # Player makes a selection
yourChoice = input('Please enter Rock, Paper, or Scissors: ')

Computer makes a selection
myChoice = items[randrange(0, 3)]

inform Player of choices
print 'I picked', myChoice
print 'You picked', yourChoice
Decide if it is a draw or a win for someone

if myChoice == yourChoice:

print 'We both picked the same thing.'

print 'It is a draw.'

elif beats(myChoice, yourChoice):

print 'Since', myChoice, 'beats', yourChoice, '...'

print 'I win.'

else:

print 'Since', yourChoice, 'beats', myChoice, '...'

print 'You win.'

print 'Thank you for playing. Bye!'
main() # invoke the program
A few more print commands were added to make the interaction more natural.

Do This: Implement the Paper, Scissors, Rock program from above and play it several times to make sure you understand it completely. Modify the program above to play several rounds. Also, incorporate a scoring system that keeps track of the number of times each player won and also the number of draws.

Exercises
1. Implement and modify the Rock, Paper, Scissors program above and play it several times to make sure you understand it completely. Modify the program so that it plays several rounds and the user is able to choose when to stop playing. Implement a scoring system that keeps track of the number of times each player has won and the number of draws. When the user is done playing, report the score. 20 pts.
2. Download the histogram.py file from the website. This file provides a template for the large-scale histogram program that we are be writing. Copy and paste the functions we have already completed (finding bin size, drawing a bar, and getting relative frequency data). If you were unable to solve these problems on your own, please feel free to use the solutions from the key.
3. Write a function that creates a graphics window that is 640 by 480 pixels and sets the coordinate system so that it is easy to draw (i.e., lower left is (0,0)) and such that the height of the window contains 140 units and the width is proportional to the bin size * number of bins + 40 units. 10 pts.
4. Write a function that takes some raw data and calculates and returns the frequency data, with the data binned into some number of classes provided by the user (i.e., numBins). To complete this task you will also need to write the function that determines and returns the midpoints of the bins. Use the data provided in the histogram.py file for now. Test your function for 5, 10, and 20 bins. In addition to your code, turn in your list of calculated frequencies. 30 pts
