





Lambda

« We've seen that lambda + define = Python's det

def function(X):
return X + 1

(define function
(lambda (x)

(+x 1))



Lambda

There 1s no “return’ statement in Scheme

All expressions evaluate to a value

— The last expression in a lambda-body 1s the value for
the entire expression

“define” 1s used with procedures and other types,
such as numbers, strings, etc.

“define” and “lambda” are separate and
independent




Lambda

e (lambda (x) x)
#<procedure>
e ((lambda (x) x) 1)
 What is a good name for (lambda (Xx) x)?

e (define function
(lambda (x)

(lambda (y) (<y x))))

» Where you create the procedure may be a
different place than where you invoke it



Lambda

 Anonymous function
e Python actually has lambda (well, a limited one)
e func = lambda x: x + 1

* Python's lambda 1s limited to a single expression
(not statements)

e Scheme does not make a distinction between
statements and expressions



Let vs. Lambda

e (let ((x2)(y5))
(+XxY))

e ((lambda (xy) (+xYy))2)5)

e [et can be implemented with lambda



Let & Lambda

et and lambda create local variables

These exist only 1n the body of the lambda or let

Their scope 1s only 1n that expression

When you invoke a lambda, 1t binds values to the
local variables

If a variable 1s not local, then it is free

LLambda's can be nested



Closure

 When you create a procedure with lambda, 1t
actually captures all of the local variables and
their values

e This 1s called an envionment

 If you invoke a closure somewhere else, 1t still
has access to the environment it was created 1n

 To find the value of a local variable, Scheme has
to search through the nested environments



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

