
1

CMSC 245 – Principles of Programming Languages

Lab#1: Go, code go!

Structure of a Go Program

The general structure of a Go program is shown below:

1 package main

2

3 <import packages>

4

5 func main() {

6 <code for main() goes here>

7 } // main()

Here are some salient features:

 Line 1: All main programs reside in a package main.

 Line 3: All packages used in the program below have to be imported. There are two

ways of doing this (we will import the fmt and math packages):

import "fmt"

import "math"

or, you can use:

import (

 "fmt"

 "math"

)

Package names are enclosed in double-quotes, and listed in alphabetical order.

 Lines 5-7: Defines the main() function. This is where execution begins.

To run a Go program use the command:

> go run <filename>.go

2

Types and Operators

Go provides several built-in basic data types: numbers (integers, floating-point numbers),

Booleans, and strings:

 Numbers-integers: The built-in types uint8, uint16, uint32, uint64 represent 8,

16, 32, and 64-bit unsigned integers. The types int8, int16, int32, int64 represent

signed 8, 16, 32, and 64 bit integers. The type int represents integers whose size is

machine-dependent (32 or 64 bit. On CS servers and on my Laptop, it is 64 bits. int is

the type you will use for most common applications. The standard operators defined on

integers are: +, -, *, /, and %.

 Numbers-floating point numbers: The built-in types float32 and float64 are used to

define floating point variables. The standard operators defined on floating-point

numbers are: +, -, *, and /.

 Booleans: The type bool is used to define Boolean values (false, true). The three

standard logical operators available are: && (and), || (or), and ! (not).

 Strings: The type string is used to define strings. String literals are written enclosed in

double-quotes "Bryn Mawr", "Haverford", etc. The operations on string type

include: + (contcatenation), s[i] (i-the character of a string s), and len(s) for finding

out the length of a string s. Strings in Go can also be compared using <, <=, >, >=, ==,

and !=.

Variables and Declarations

Variable names: All variable names must start with a letter, and may contain letters, numbers,

or _ (underscore). CamelCase (or camelCase) names are good practice. Although, Go assigns

special meanings to names beginning with an uppercase letter. More on that later when we do

packages.

Scope: Variables can be defined anywhere after the import statement. Go uses lexical scoping.

A variable is visible after it is defined, in the block that it is defined.

There are many different ways to declare variables in Go.

1. Basic: var <name> <type>

var n int

var name string

All variables are initialized by default: 0 for integers, 0.0 for floats, "" for strings, and

false for Boolean type.

2. Initializing variables: var <name> <type> = <value>

var n int = 10

3

var name string = "Bryn Mawr"

3. Type Inference: var <name> = <value>

var n = 10

var name = "Bryn Mawr"

If you define a variable with an initial value, Go infers its type using the value provided

and you do not need to specify the type. Above, Go will infer n to be an int and name

to be of type string.

4. Multiple variables can be defined on a single line:

var <name1>, name2>, … <type>

var n, m int

Multiple variable can also de initialized:

var n, m = 10, 20

Above, n will be initialized to 10 and m to 20. Go will also infer their type to int. If

needed, the type can also be specified.

5. Group Definitions: Go also provides a syntax for defining multiple variables in groups:

var (

 n = 10

 name = "Bryn Mawr"

 rank int

)

Groups are often used to define related entities, like a group of constants, error codes,

etc.

6. Short-hand Declarations: <var> := <value>

n := 10

Typically, short variable declarations are useful in defining loop control valriiables. They

can also be used anywhere to define and initialize variables. The := operator is not to

be used as an assignment. That is, for a given variable, it can only be used once (at the

time of its definition). Multiple assignment (see below) is permitted.

4

Control Structures

 Assignment: <var> = <expression>

area = width * height

 Multiple Assignment:

<var1>, <Var2>, …, <varN> = <expr1>, <expr2>, …, <exprN>

<var1>, <Var2>, …, <varN> := <expr1>, <expr2>, …, <exprN>

n, m := 10, 20

Defines n and m to be int (by inference), initialized to 10 and 20, respectively.

Multiple assignment can also be used to swap two variables:

n, m = n, n

The above swaps the contents of n and m. This is similar to the behavior in Python.

Often, in Go, many functions return multiple values (we will see when we do functions)

where multiple assignment can also be used.

 Conditional Statements- If

if <condition> { if <condition> {

 <statement(s)> <statement(s)>

} } else {

 <statement(s)

}

max = b if a > b {

if a > b { max = a

 max = a } else {

} max = b

 }

In Go if- statements, you do not have to surround the <condition> with parentheses (),

but you can. However, braces {} are required for every block.

5

 Conditional Statements- switch/case

switch <expression> {

case <expression1> : <statement(s)>

case <expression2>: <statement(s)>

…

default: <statement(s)>

}

switch month {

case 1, 3, 5, 7, 8, 10, 12:

 daysInmonth = 12

case 4, 6, 9, 11:

 daysInMonth = 30

case 2:

 if (leapYear(year) {

 daysInMonth = 29

 } else {

 daysInMonth = 28

 }

default: fmt.Printf("Illegal value for month: %v\n", month)

os.Exit(1)

}

The <expression> in switch is optional. And, cases can refer to any variable in the

current scope (see below). Case expressions can be any value, or an expression (see

below). There is no break statement required (as in C, C++, Java, etc.). Only the case

selected is executed.

r = rand.float64() // generates a random float in [0.0..1.0)

switch {

case r < 0.5:

 outcome = HEADS

case r >= 0.5:

 outcome = TAILS

}

The switch/case statement also provides the use of a fallthrough statement in case

there is a need to mimic the default fallthrough behavior of C/Java. Though I haven’t yet

found a good example of its use.

6

 Loops- for

The only loop statement Go has is the for- statement. The general form of a for-

statement is:

for <init>; <condition>; <post> {

 <statements>

}

Unlike C, C++, Java, etc. there are no parentheses around the three control components

of the loop. As is the case for if- statement, the braces {} are always required. Here are

some examples:

for i := 0; i < n; i++ {

 sum += i

}

Notice the use of short-hand declaration to define, initialize, and use the loop control

variable, i. The for- statement can be used as a while- loop (i.e no <init> and no

<post>):

for a != b {

 if a > b {

 a = a – b

 } else {

 b – b – a

 }

}

You can omit all three loop control components:

for {

 <statement(s)>

}

The above represents an infinite loop. <statement(s)> will be repeated forever. With

arrays and slices (we’ll discuss these later), you can write a range loop to iterate through

all elements of an array, A:

for i, x := range A {

 fmt.Prinf(“index:%d, element: %v\n”, i, x)

}

Above, i is set to the index, and x to the A[i] for all elements of A, starting with the

first (at index, 0).

7

All loops can use the continue and break statements to skip to the next iteration of

the loop, or to exit the loop, respectively.

Exercises

1. The Notorious FizzBuzz Problem: Write a program that prints numbers from 1 to 100.

However, for numbers that are multiples of three it prints the word “Fizz” instead of the

number, for multiples of five, it prints “Buzz”. And, for numbers that are multiples of both three

and five, it prints “FizzBuzz”.

2. Find out how to generate random numbers in Go. Write two programs that simulate the

following:

 rolls one six-sided die 100 million times and computes the empirical probability of

getting a 6.

 rolls of two six-sided dice 100 million times and computes the empirical probability of

getting a sum of 7.

What to Hand in:

Submit a PDF document in Dropbox containing the following:

1. A printout of the code and sample runs of the Go programs in Exercises 1 and 2.

