
1

CMSC 245 – Principles of Programming Languages
Lab#4: Arrays, Slices, Functions, Command Line Arguments

In this lab we will learn about arrays, slices, and functions in Go. We recommend that you try all
the features presented in this lab using the Go Playground (https://play.golang.org/), a web-
based Go learning tool where you can enter short Go programs and run them. As you proceed,
whenever you have any questions, go ahead and try them out in code ro get your answers. This
is the best way to learn Go.

Structure of a Go Program

The general structure of a Go program is shown below:

1 package main
2
3 <import packages>
4
5 func main() {
6 <code for main() goes here>
7 } // main()

To run a Go program use the command:

> go run <filename>.go

Arrays

In Go, like in C or Java, an array is an indexed sequence of elements of the same type. For
example, here are some simple declarations:

var a [10]int
data := [5]int{10, 20, 30, 40, 50}
primes := [5]{int
 2,
 3,
 5,
 7,
 11,
}

Here is a short synopsis of the above definitions:

• a is an array of 10 integers (int). Go initializes all elements to 0.
• data is an array of 5 integers and initialized using the values supplied.
• primes is an array of 5 integers. The values are each provided on a separate line. The

comma (,) following the last value (11) is required. Why?
• In all cases index begins with 0. To access the elements of a you write a[0], a[1], …,

a[9].

https://play.golang.org/

2

• The array is created at the time of definition. And, its size remains fixed once created.
That is, the size of the array is part of its type.

• As long as two arrays are the same size and type, they can be assigned/copied using the
assignment (=) operator:

primes := [5]int{2, 3, 5, 7, 11}
var p [5]int
p = primes

p[] will contain a copy of all the elements of primes[] after the last statement.

• Elements of an array can be printed using the fmt.Println() function:

fmt.Println(primes)
[2 3 5 7 11]

• To iterate through all elements of an array:

sum := 0
for i:= 0; I < len(a); i++ {
 sum = sum + a[i]

Or, you can use a “range” loop:

sum := 0
for _, x := range a {
 sum = sum + x
}

The expression “range a” returns two values (index, element at index). However, since
we will not be using the index, we need to use the anonymous variable (_).

3

Slices

Slices get around the limitations of fixed size arrays (though they are also of fixed size!). They
are like arrays, and can be defined without specifying a size:

var a []int

Above, no length is specified. In fact, an array of length 0 is created. In order to create a slice of
a given length you can either copy a slice of another array into it:

a = primes[0:3]
fmt.Println(a)
[2 3 5]

Now the length of a[] will be 3. However, it is NOT a copy. I.e. any change to a[] will also
affect primes[]. See below.

Alternately, you can create a new slice by using the make() function:

a = make([]int, 3)

Creates an empty array of 3 integers. If you want to create a slice that has a certain length, but
also provide some capacity to grow, you can use:

a = make([]int, 3, 6)

It creates an array of three elements (initialized to 0), but with a capacity of 6. That is, after the
above length of a will be 3. But, you will be able to assign a fourth, fifth, and a sixth element to
a[]:

A[3] = 10
a[4] = 11
fmt.Println(a)
[0 0 0 10 11]
fmt.Println(len(a))
5

Like arrays, slices can be assigned:

primes := [5]int{2, 3, 5, 7, 11}
var p [5]int

p = primes[:]

4

However, this is a shallow copy. p[] and primes[] refer to the same array. In order to create
a copy of primes[] into p[] (a deep copy), you have to use the copy() function:

copy(p, primes)

Otherwise, slices can be accessed, and processed, just like arrays. Slices are useful when writing
functions that take array parameters. We will see that in the next section.

5

Functions

Functions in Go require you to specify the number and type of all parameters, as well as the
return type. Here is a simple function:

func max(a int, b int) int {
 if a > b {
 return a
 } else {
 return b
 }
} // max()

The syntax is:

func function-name(parameters) return-spec {
 function-body
}

Array/Slice Parameters
To compute the maximum value in an array, you will need to specify the array formal
parameter as a slice (or the type of formal and actual array parameter will have to match, but
that is too restrictive and seldom used):

func max(a []int) int {
 m := a[0]
 for i:=1; i < len(a); i++ {
 if a[i] > m {
 m = a[i]
 }
 }
 return m
}

Now, you can call max() with any slice as its actual parameter as long as it is a slice of integers.

Named Return Types
In Go, you can specify a variable name for the return type:

func max(a []int) (m int) {
 m = a[0]
 for i:=1; i < len(a); i++ {
 if a[i] > m {
 m = a[i]
 }
 }

6

 return
}

There are three important differences between the function we wrote above:

1. In the function header, we now specify the name of the returned variable: (m int)
2. Because that is equivalent to a local variable declaration, we changed the initial

assignment: m = a[0]
3. The return statement no longer needs to mention the name of the returned variable

(since it is declared in the function header). Though, Go will also allow: return m

More importantly, max() can now be used to compute the largest value in any integer slice of
any length.

primes := []int{2, 3, 5, 7, 11}
p := []int[42, 32, 67]

fmt.Println(max(primes))
fmt.Println(max(p))

11
67

Multiple Return Values
Functions can also return more than one return value. For example, if we wanted to find out
the value and index of the largest value in a slice:

func max(a []int) (i int, m int) {
 m = a[0]
 i = 0
 for j := 0; j < len(a); j++ {
 if a[j] > m {
 m = a[j]
 i = j
 }
 }
 return
}

You can now call the function max as shown below:

index, value := max(primes)

Many functions in Go take advantage of this feature.

7

Variable Number of Arguments – Variadic Functions

Go allows you to write functions that may take an unknown number of parameters. For
example, to compute the largest of two or more numbers:

a = max(x, y)
b = max(x, y, z)
c = max(w, x, y, z)

Such functions are written as shown below:

func max(a int, args ...int) (m int) {
 m = a
 for _, x := range args {
 if x > m {
 m = x
 }
 }
 return
}

Above, the ellipsis (…) before int in the formal parameter specifies that the parameter args
could be zero or more integers. We can then traverse args as if it were a slice ([]int).
Additionally, wherever a variadic parameter is used, we can pass a slice as an actual parameter
by following the name of the slice with ellipsis:

m := max(2, primes…)

Finally, Go allows you to define local functions within a function. We will not cover that here.

8

Command Line Arguments

Like in C, C++, Java, Python, Go programs accept command line arguments. The os package
provides the string slice Args[], that contains one string for each command line argument.
Args[0] is the command itself.

The program below prints out the Args[] slice, followed by the integer value of the first
command line argument (a number):

package main
import (
 "fmt"
 "os"
 "strconv"
)

func main() {
 fmt.Println(os.Args)
 if n, err := strconv.Atoi(os.Args[1]); err == nil {
 fmt.Println(n)
 }
}

strconv.Atoi() converts a string containing a number to an int. It returns two values, the
number itself, and an error value (in err) in case there it was unable to convert the string into
an int. The error value returned is nil if successful. The program above, tests to see if err is
nil before printing the value of the integer command line argument.

The flags package provides more elaborate command line argument parsing when flags might
be supplied. We will leave that for self-study for another time.

9

Exercise (Assignment 4)

1. Collecting Cards in Candy: A candy company wishes to run a promotion in the next quarter.
Every candy wrapper will contain a picture of a player from the Womens National Soccer Team.
There are 28 players on the roster, plus 7 coaches, making a total of 35 pictures. Pictures will be
randomly inserted in each candy wrapper. The company hopes that kids buying their candy will
engage in collecting all 35 pictures and placing them in a picture album (sold separately by the
company). Each picture will carry a unique number (from 0..34).

Before running with the idea the company wants to examine how this promotion might
improve sales of its candy.

Write a program in Go that performs a simulation to determine the number of candies a kid
would have to purchase in order to collect all 35 cards. Your program should input the number
of picture (say 35) on the command line argument:

$ go run collector.go 35
XXX

The program will print out the expected number of candies (XXX) that kids will purchase to
collect all 35 cards. Here is a possible design:

1. Write a function collect(c) that will perform a simulation of collecting c cards. It will
return the total number of candies bought.

2. Once written, you can use collect() to perform several trials and keep track of the
number of candies bought:

n = Number of cards to collect
trials = 1000000
sum = 0
do trials times:
 sum = sum + collect(n)
output sum/trials as the average number of candies to buy in order to collect n cards

As the number of trials increases, the data will start to converge. Run your program to
perform 1000,000 trials.

3. Run the program with 1000,000 trials to compute the number of candies required to be
bought in order to collect 35, 100 pictures, and 500 pictures.

