
Built-in types, Variables and
Control Flow in Haskell

By Caroline Cox, Trang Dang, and Vy Pham

Built-In Types

Comparing Haskell's built-in types with Java: (Source: Haskell without the theory)

We can see how similar Haskell’s built-in Data types are to java!

Similarity between Haskell built-in types and Java built-in
types
We also have Int, Float, Double, Char, and Bool to represent numbers, characters and
Boolean values.

1. Booleans: Bool
- There are two values of this data type: True or False.
- The basic Boolean functions are and (&&), or (||) and not
- There is also otherwise defined as True

2. Characters: Char
- Represent Unicode characters

3. Numbers: Int, Float and Double
- Int: slight difference – in Java, 32 bit – in Haskell, depends on the machine but usually 32

or 64 bits (represent Integers)
- Float: 32-bit representation of floating-point numbers
- Double: 64-bit representation of floating-point numbers

Some examples:

x :: Int

x = 1

‘a’ :: Char

Differences between Haskell’s built-in types and Java’s built-in
types
Int vs Integer
First, Haskell has both Integer and Int types. Unlike Java, Integer isn’t a wrapper class of Int:
While Int represents integer with 32 or 64 bits, Integer can represent any large number up to the
storage limits of your machine. (Source: haskell wiki)

Because of the promised 32- or 64-bits representation, it’s quicker to operate on Int than on
Integer. However, looking back to the problem with the voting assignment for CS113, it appears that
overflow and underflow can cause strange bugs, so we may be better off with Integer when we are
dealing with a very unpredictable number range.

Control Structures
If <condition> then <true-value> else <false-value>
Condition is boolean value and if it is true then the <true-value> is returned; else, it must be false and
<false-value> is returned

Similar to if...else expressions in other languages except else clause is required because expression must
return a value

Can also be written with guards (|) and using the otherwise keyword, which is an alias for
boolean True. The last guard indicates a catch-all expression that returns a value for the expression
if none of the previous conditions following previous guards are true

Case expression
Similar to the switch statement in C and Java

Syntax: f <variable> = case <variable> of

<value1> -> <result1>

<value2> -> <result2>

<value 3> -> <result3>

 _-> <defaultValue>

Character _ is the wildcard pattern; stands for value of variable that is something other than previously
tested values

Cases must be indented to the right after the keyword “of”

No for or while loops, which means recursion must be used to obtain the same results acquired in other
imperative languages using these constructs

“Do” keyword is used in Haskell I/O, meaning I/O is more imperative. However, Haskell is still purely
functional because the more imperative nature of I/O is distinct and kept separate from the purely
functional aspects of Haskell.

Variables
Haskell is a programming language with immutable variables, meaning, after declaring a variable, its
value cannot be changed within the same scope. Mutable variable can be programmed via monads.

The type of a variable does not have to be explicitly stated, since Haskell uses type inference.

When a new variable is declared, its value is automatically allocated. The garbage collector will collect
values that are out of scope.

Since Haskell has immutable variables, local bindings can be used to declare a new variable of the same
name in a specific local scope.

Example:

let x = 1

let x = 1 + 2 in x + 3

