
Judy Wang, Tino Nguruve, Linh Le
Deepak Kumar
Principles of Programming Languages
26 October 2020

Swift Structure, Types and Operators, Variables and Declaration, and Control Flow

Structure of a Swift Program

Similar to many other programming languages, one of the first things that needs to be

done is importing the packages you will need for your program. Some common packages to

import are Foundation and UIKit, which already has Foundation within it’s package. People can

also import Swift, but it is not necessary. The Swift package allows people to print words, for

example a person can explicitly say Swift.println(“”) or simply say println(). From there you are

able to use the word “func” to begin functions, which is similar to go lang. Swift does not need

semicolons, but a programmer could if they wanted to and would not get errors. In addition,

brackets are very important in Swift and play a similar role in other languages like Java in order

to determine scopes.

Types and Operators in Swift

Swift has built in types such integers(​int​), strings, boolean (​bools​), and floating point

types. For integers, Swift is similar to go lang where you can establish how many bytes you want

your integers to have ranging from Int8-Int64. Similar to C, there are also unsigned integers

where it excludes negative numbers. This means you have more memory to make longer

numbers. This can be represented as UInt8-UInt64. For floating point types, floats have allotted

32 bytes, while doubles are allotted 64 bytes. The operators that can be used for floating point

types and integers are addition (+), subtraction (-), multiplication (*), division (/) and modulo

(%). For boolean values or ​bool​, they are represented as true or false, which are utilized in

condition statements. There are many ways that conditions can be used, for example: Equal to (a

== b) , Not equal to (a != b), Greater than (a > b), Less than (a < b), Greater than or equal to (a

>= b), Less than or equal to (a <= b) where a and b can be represented as a boolean type. Strings

can be represented as ​string​. String literals are encapsulated by quotations. Similar to booleans,

strings can also use comparator operations to compare strings. If you wanted to see the length of

a string, the syntax would be variableName.count.

Variables and Declarations

As with any other languages, constants and variables in Swift associate a name with a

value of a particular type. Once a constant or variable of a certain type is declared, users cannot

declare it again with the same name, or change it to store values of a different type. Nor can you

change a constant into a variable or a variable into a constant. The names cannot begin with a

number, nor can it contain whitespace characters, mathematical symbols, arrows, private-use

Unicode scalar values, line- and box-drawing characters. Allowing names to include Unicode

characters means emoji characters can also be used for variable names in Swift, but this is not

recommended. The convention of Swift naming is camelCase. Variables must either be declared

to be only a type with the syntax ​var <name>: <type>​ or initialized a specific value ​var

<name>: <type> = <value>​ before they’re used, while constants should be initialized with

keyword ​let​. Swift’s type inference allows the variables to be initialized with the syntax ​var

<name> = <value> ​ without the type annotation, and instead lets the compiler infer the type of

data to store based on the initial value assigned. Multiple variables of the same type can also be

declared with ​var <name1>, <name2>, ...: <type>, ​or initialize individual values with ​ var

<name1> = <value1>, <name2> = <value2>,...​. Additionally, Swift is a type-safe language,

thus encouraging the user to be explicit about the types of values the variables and constants will

hold. It will give error messages if a type mismatch is found during compiling between the

original type declared for a variable and the value the user tries to pass to it.

Control Structures in Swift

As compared to C-like languages Swift’s control flow structures are considered more

robust. Cases can match many different patterns, including interval matches, tuples, and casts to

a specific type. Swift’s control flow statements include while loops, if, guard and switch

statements to execute the code based on certain conditions. It is important to point out that

Swift’s conditional statements are similar to Go’s conditional statements. It also has statements

such as break and continue to transfer the flow of execution to another point in the code. To

iterate over arrays, dictionaries, ranges, strings, and other sequences, Swift uses for-in loops

which makes everything easier. In order to iterate through ranges, it uses the syntax 1...5 within

the for loop. This means that it will iterate through 1-5 inclusive. Matched values in a switch

case can be bound to temporary constants or variables for use within the case’s body, and

complex matching conditions can be expressed with a where clause for each case.

Work Cited

https://www.oreilly.com/library/view/ios-8-programming/9781491909645/ch01.html

https://www.programiz.com/swift-programming/operators

https://medium.com/coding-blocks/data-types-in-swift-where-it-all-starts-c1311fa93368#:~:text=

Swift%20offers%20a%20collection%20of,found%20in%20most%20programming%20language

s​.

https://www.oreilly.com/library/view/ios-8-programming/9781491909645/ch01.html
https://www.programiz.com/swift-programming/operators
https://medium.com/coding-blocks/data-types-in-swift-where-it-all-starts-c1311fa93368#:~:text=Swift%20offers%20a%20collection%20of,found%20in%20most%20programming%20languages
https://medium.com/coding-blocks/data-types-in-swift-where-it-all-starts-c1311fa93368#:~:text=Swift%20offers%20a%20collection%20of,found%20in%20most%20programming%20languages
https://medium.com/coding-blocks/data-types-in-swift-where-it-all-starts-c1311fa93368#:~:text=Swift%20offers%20a%20collection%20of,found%20in%20most%20programming%20languages

