
Common Lisp:
A Brief Overview

Maya Johnson, Haley Nolan,
and Adrian Velonis

Common Lisp Overview

● Common Lisp is a commonly used dialect of LISP

● 2nd oldest high-level programming language

● Both functional and object-oriented

● Based on mathematical notation, and the syntax relies heavily on

parentheses

(print "Hello, world!")

Variables and Assignment Review

Local Variables
- Defined with let, redefined with

setq/setf
- (let (<var> <expression>))

Ex: (let (str "Hello, world!"))

Dynamic (Global) Variables
- Defined with defvar or defparameter
- (defvar <var> <expression>)
- (defparameter <var> <expression>)

Multiple Assignment with Local Variables
- Using let

(let ((<var1> <expression1>)
 (<var2> <expression2>)))

- Using multiple-value-bind
(multiple-value-bind <var-1 .. var-n>

<expression> <optional body using var>)

Built-In Types and Operators Review

Integer Types
- bignum
- fixnum

Rational Type
- ratio

Floating Point Types
- short-float
- single-float
- double-float
- Long-float

Complex Numbers
- #C(1 1) or (complex (+ 1 2) 5)
- (realpart #C(7 9)) or (imagpart #C(7 9))

Boolean Type
- Value nil is false; all other values are

true (usually t)
Comparison Operators for above types
 =, /=, >, <, >=, <=, eql (checks type)

Character Type
- #\x: represents character ‘x’
- CHAR=, CHAR/=, CHAR<, CHAR>, etc.

String Type
- One-dimensional array of

characters
- Compared using STRING=, STRING<,

etc
Logical Operators
- and, or, not

Composite Data Types

Sequences: underlying structure of lists, vectors (1D arrays), and strings
Lists
- Special object nil which represents empty list
- Made up of cons cells, which are essentially nodes -> allows circular lists

- Format is (cons car cdr)
- Can be a two-element structure: (cons 1 2) -> (1.2)
- Becomes a list if cdr of last cell is nil: (cons 1 (cons 2 nil)) -> (1 2)

- Literal list object: (list 1 2) -> (1 2) OR ‘(1 2) -> (1 2)
- Get length with (list-length <list>) -> returns length OR nil if circular
- Compare/use lists using set functions (e.g., union)

Arrays
- Dimensional collections of objects
- Create and modify using make-array and adjust-array
- (defparameter myarray (make-array '(2 2) :initial-element 1)) -> #2A((1 1) (1 1))
- 1-dimensional arrays are vectors

Hash Tables: map keys to values -> (setf (gethash 'one-entry *my-hash*) "one")
Alists: association lists, made up of cons cells -> (FOO . “foo”) (BAR . “bar”)
Plists: property lists, cons cells alternates keys and values -> FOO “foo” BAR “bar”

Composite Data Types

Structures
- Common Lisp’s version of a struct
- Define using defstruct

(defstruct person
name
id
birthday)

- Automatically populates some functions
- Access functions to get inner variables (similar to “get” methods)
- Type checking function person-p -> returns true if of type person
- Constructor function make-person
- Print function (similar to toString)
- Copy function copy-person

- Can altered variables using (setf (name person1) “Bob”)

Selection Review

Conditional Statements
- (if <condition> <value if true> <value if false>)

Ex: (if t 5 6) → 5

- (cond (test then) (t else))
Ex: (cond (t 5) (t 6)) → 5

- (when <condition> <value>)
Ex: (when t 5) → 5

- (unless <condition> <value>)
Ex: (unless t 5) → NIL

Iteration and Recursion Review

Iteration
- Built-in loop and do keywords

(loop for <var> in <list>
do (<action>))

- Keyword dotimes
(dotimes (i 10)

(print i))

- Macro iter
(iter (for <var> from <value1> to <value2>))

- No existing while loop, can define macro
(defmacro while (condition &body body)

(loop while, condition do (progn ,@body)))

Recursion
- Recursion is an important feature of

Common Lisp
Ex.: (def factorial (x)

(cond (= x 1 1)
(t (* x (factorial (- x 1))))))

Subroutines

● Functions in Common Lisp are defined
with the defun keyword

● Existing functions can be called
with the terms funcall or apply

● Anonymous functions can be written
using the lambda macro

● The syntax #' can be used to signify
that the program is searching for a
function name, rather than a value
of the function

(defun add(x, y)
(+ x y))

(defun hello-world()
(format t "Hello, world!"))

(defun calladd()
(funcall add(x y)))

(defun calladd2()
(apply add(x y)))

(lambda (x)
(= 0 (mod x 2)))

(funcall #'add(x y))
(funcall #'add '(1 2))
(funcall #'(lambda (x y) (+ x y)) 2 3)

Parameter Passing

● Uses call by sharing
○ All variables are references to object -> that reference is passed
○ Formal and actual parameters refer to the same object

● Allows for a fixed or variable number of parameters
○ User-defined functions have a fixed number by default

● Uses positional association by default, but allows named association

Variable Number of Parameters

● List any required
arguments first, then
&rest plus a name for
the parameter list

Format:
(defun func-name (required-parameters &rest args))

Example2:
(defun count-arguments (&rest args)

(length args))

(count-arguments 1 2 3 4 5)
-> 5
(count-arguments)
-> 0

2.https://ccrma.stanford.edu/courses/220b
-winter-2005/topics/commonlisp/arguments.
html

Named Parameters

● Use &key before any named
parameters
○ They have a default

value and are
optional

Format: (defun func-name (&key (param-name1
 default1) (param-name2 default2) …))

Call:(func-name :param-name1 value1 :param-name2
 value2)

Example2:
(defun poem (&key (rose-color 'red)
(violet-color 'blue))
 (list 'roses 'are rose-color 'and 'violets
'are violet-color))

(poem)
-> (roses are red and violets are blue)
(poem :violet-color 'violet :rose-color 'yellow)
-> (roses are yellow and violets are violet)

2.https://ccrma.stanford.edu/courses/220b-wint
er-2005/topics/commonlisp/arguments.html

Data Abstraction Overview

● Common Lisp supports object-oriented programming

● It is class based (every object is an instance of a class)
○ Every class is a subclass of the root class T (done implicitly)

● Users can define new classes
○ Methods are associated with these classes through generic functions

(encapsulation)

● Supports multiple inheritance

Defining Classes

Format of a class:

(defclass <class-name> (list of super
classes)
 ((slot-1
 :slot-option slot-argument)
 (slot-2, etc))
)

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

(defclass person ()
 (name lisper))

(defclass person ())

These are all valid definitions
of the person class:

Defining Classes

● Instances of classes are
created with make-instance
○ But good practice to

define a constructor
for it

(defvar p1 (make-instance 'person :name
"me"))

(defun make-person (name &key lisper)
 (make-instance 'person :name name :lisper

lisper))

Accessing Variables in Classes

● Variables in classes are
accessible at any point
outside the class
○ Accessed using

“slot-value”

Format: (slot-value <object> <slot-name>)

(defvar p1 (make-instance ‘person
 :name “Bryn”))

(slot-value p1 ‘name)
-> “Bryn”

(setf (slot-value p1 ‘lisper “yes”))

(slot-value p1 ‘lisper)
-> “yes”

Generic Functions

● Core of Common Lisp’s
object-oriented-ness

● How classes are associated with
behaviors
○ The generic function takes

the class it’s associated
with as a parameter

○ Its subclasses inherit this
function (like how circle
inherited shape’s function)

(defclass shape ())

(defgeneric calc-area (shape)
 (:documentation “calculate the area
of the shape”))

(defclass circle (shape)
 (radius))

(defmethod calc-area ((shape circle))
 (* pi (* radius radius)))

Standard Method Combination

● Four types of methods: primary, before, after, and around
○ All functions shown previously have been primary functions

● Before methods get called before the primary method, after methods after,
and around methods when relevant and called by call-next-method

● The type is declared with a method qualifier (if none, primary is assumed)

(defmethod method-name :before (...) ...)
(defmethod method-name :after (...) ...)
(defmethod method-name :around (...) ...)

Before and After Methods

; Define a primary method

(defmethod combo1 ((x number)) (print 'primary))

; Define before methods

(defmethod combo1 :before ((x integer))
(print 'before-integer))

(defmethod combo1 :before ((x rational))
(print 'before-rational))

; Define after methods

(defmethod combo1 :after ((x integer))
(print 'after-integer))

(defmethod combo1 :after ((x rational))
(print 'after-rational))

(combo1 17)
-> BEFORE-INTEGER
-> BEFORE-RATIONAL
-> PRIMARY
-> AFTER-RATIONAL
-> AFTER-INTEGER

Example from 12. https://dept-info.labri.fr/~strandh/Teaching/MTP/Common/David-Lamkins/chapter14.html

(combo1 4/5)
-> BEFORE-RATIONAL
-> PRIMARY
-> AFTER-RATIONAL

Around Methods and call-next-method
; Define a primary method

(defmethod combo2 ((x number)) (print 'primary))

; Define a before method and after method
(defmethod combo2 :before ((x integer)) (print 'before-integer))
(defmethod combo2 :after ((x integer)) (print 'after-integer))

; Define around methods

(defmethod combo2 :around ((x float))
 (print 'around-float-before-call-next-method)
 (let ((result (call-next-method (float (truncate x)))))
 (print 'around-float-after-call-next-method)
 result))
(defmethod combo2 :around ((x number))
 (print 'around-number-before-call-next-method)
 (print (call-next-method))
 (print 'around-number-after-call-next-method))

(combo2 82.3)
-> AROUND-FLOAT-BEFORE-

CALL-NEXT-METHOD
-> AROUND-NUMBER-BEFORE-

CALL-NEXT-METHOD
-> PRIMARY
-> AROUND-NUMBER-AFTER-

CALL-NEXT-METHOD
-> AROUND-FLOAT-AFTER-

CALL-NEXT-METHOD

Example from 12.
https://dept-info.l
abri.fr/~strandh/Te
aching/MTP/Common/D
avid-Lamkins/chapte

r14.html

(combo2 17)
-> AROUND-NUMBER-BEFORE-C

ALL-NEXT-METHOD
-> BEFORE-INTEGER
-> PRIMARY
-> AFTER-INTEGER
-> AROUND-NUMBER-AFTER-

CALL-NEXT-METHOD

Exception Handling

Common Lisp uses conditions to represent
errors/exceptions or places in a program
where there are branches in logic

Creating Conditions

- Built-in conditions
- User-defined conditions: define

using define-condition and
initialize using make-condition

Throwing Conditions

- Can throw using error or warn
- Depends on whether opening debugger
- Also has simple form

(define-condition my-division-by-zero (error)
 ((dividend :initarg :dividend
 :initform nil
 :reader dividend))
 (:report (lambda (condition stream)
 (format stream "You were going to divide ~a by
 zero.~&" (dividend condition)))))

(make-condition 'my-division-by-zero :dividend 3)

(error 'my-division-by-zero :dividend 3)
;; Debugger:
;;
;; You were going to divide 3 by zero.
;; [Condition of type MY-DIVISION-BY-ZERO]

(warn 'my-division-by-zero :dividend 3) ;; no debugger

(error “This is an error!”) ;; type simple-error

Exception Handling

After we define our conditions, we can
handle them in many ways:

- Ignore: ignore-errors
- Returns NIL and condition

- Catch: handler-case
- Similar to try/catch
- General or specific

- Mapping: handler-bind
- Specify different functions

for possible conditions
- “Finally”: unwind-protect

- Similar to the “finally” of
try/catch/finally

(ignore-errors
 (/ 3 0))
; (condition details display here)
NIL
#<DIVISION-BY-ZERO {1008FF5F13}>

(handler-case (/ 3 0)
 (error (c)
 (format t "We caught a condition.~&")
 (values 0 c)))

(handler-case (/ 3 0)
 (division-by-zero (c)
 (format t "Caught division by zero: ~a~%" c)))

(handler-bind ((opts:unknown-option #'unknown-option)
 (opts:missing-arg #'missing-arg)
 (opts:arg-parser-failed #'arg-parser-failed))
 (opts:get-opts))

(unwind-protect (/ 3 0)
 (format t "This won’t cause issues.~&"))

Exception Handling

We can also use restarts and
assertions to deal with conditions.

- Restarts: options in debugger
used to handle conditions
- Can define our own cases

using restart-case
- Assertions: check truth value

using assert and debug if needed

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
 0: [ABORT] Exit debugger, returning to top level.

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero ()
 0)
 (divide-by-one ()
 (/ x 1))))
(divide-with-restarts 3 0)

;; simplified version

restarts:
 0: [RETURN-ZERO]
 1: [DIVIDE-BY-ONE]
 2: [ABORT]
 3: [RETRY]

(assert (realp 3))
;; NIL = passed

(defun divide (x y)
 (assert (not (zerop y))
 (y) ;; list of values we can change.
 "Y can not be zero. Please change it")
 (/ x y))

(divide 3 0)
;; Y can not be zero. Please change it
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion with new value for Y.
;; …

Resources

1. Programming Languages Pragmatics (class textbook)
2. https://ccrma.stanford.edu/courses/220b-winter-2005/topics/commonlisp/arguments

.html
3. https://lispcookbook.github.io/cl-cookbook/error_handling.html
4. http://cl-cookbook.sourceforge.net/functions.html
5. https://en.wikipedia.org/wiki/Defun
6. https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node81.html
7. http://www.gigamonkeys.com/book/functions.html
8. http://www.gigamonkeys.com/book/practical-a-simple-database.html
9. https://towardsdatascience.com/a-swift-introduction-to-common-lisp-16a2f154c423
10. https://lispcookbook.github.io/cl-cookbook/clos.html
11. http://www.gigamonkeys.com/book/object-reorientation-generic-functions.html
12. https://dept-info.labri.fr/~strandh/Teaching/MTP/Common/David-Lamkins/chapter14

.html
13. https://lispcookbook.github.io/cl-cookbook/data-structures.html
14. https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node169.html

