
Haskell subroutines and parameter passing, exception handling, and data
abstraction

By Caroline Cox, Trang Dang, and Vy Pham

Subroutines and Parameters Passing

Subroutines

• Haskell is a functional language, thus it only uses functions and not procedures:

o Subroutines cannot have side effects, meaning that various internal states of the
program will not change. Functions will always return the same result if
repeatedly called with the same arguments.

o Thus, Haskell only supports functions, since procedures that do not return a
value have no use unless they can cause a side effect.

• Example of function in Haskell: Haskell has Type Inference, so stating types in function

declaration is not needed, but still encouraged for clarity

• Pattern Matching: Pattern Matching helps simplify code by matching specific type of

expressions.
o Function that says the numbers from 1 to 5 and says "Not between 1 and 5" for

any other number
o The last line is a catch-all which catches any pattern that does not match 1 to 5

o Haskell does not have a "for" loop, so recursion is an integral part of Haskell

programming

o The compiler starts by searching for function "fact" with an argument.
o If the argument is not equal to 0, then the number will keep on calling the same

function with 1 less than that of the actual argument.
o When the pattern of the argument exactly matches with 0, it will call our pattern

which is "fact 0 = 1"

Parameters Passing

• Haskell uses lazy evaluation
o Expressions are not evaluated when they are bound to variables, but their

evaluation is deferred until their results are needed by other computations.
o Arguments are not evaluated before they are passed to a function, but only

when their values are actually used

• Thus, Haskell uses call-by-name, where arguments are substituted directly into the
function body and then left to be evaluated whenever they appear in the function.

• Call by name:

o On invocation:
- Substitute textually the names (expressions) of actual parameters into

text of function
- Execute the function

o On return:
- Pop the stack frame

Data Abstraction

• As a functional programming language, Haskell has more mechanisms for abstraction
than an imperative language like C++ or Java

o Haskell programs focus on what is being computed as opposed to how to
compute it. The implementation of how to compute something is hidden by a
computational interface that acts as a function

o Automatic garbage collection, although not directly used by the user, eliminates
the need for freeing up memory in bits, acting as an abstraction to distance the
user from the hardware

• Haskell doesn’t have OOP because you can’t group data and functions into a single
“object”

• Inheritance can be emulated in Haskell but it’s not really necessary
o As long as the data type fulfills the requirements of a class it can be instantiated

as an instance of that class and doesn’t need to be a child class (no need for
inheritance)

• Haskell has two mechanisms for using ADTs, classes and modules
o Implementation of data type is written in a separate module and only the

interface is exported/visible to the user
o Both mechanisms must be used together in order to encapsulate type classes

§ Module export list:

• Constructor is hidden (if it weren’t, method signature would

include Stack(Stk))
• Stack can only be created using public facing methods empty,

push, and pop and examined with top and isEmpty
o Aspects of both mechanisms

§ Internal implementation hidden from user (encapsulation): hidden
constructors and no pattern matching

§ Data is accessed through methods or operators, which are exposed in a
signature

§ For example, one method of a Stack ADT is push, whose signature would
look like this: push :: a -> Stack a -> Stack a

• Built-in and user-defined ADTs are possible
o Examples of built-in ADTs are the primitive types Integer and Float
o Example of user-defined ADT is the Stack type mentioned above
o Haskell comes with the Show type class, of which a type can be instantiated by

providing the type with a show function that converts the type to a string
• Parametrized data type can also be thought of as ADTs because some information in the

type can be left undefined
o Example:

o Example of elements being defined in parametrized data type above:

o

Exception Handling

- Distinction between “exception” and “error” in the articles from
https://wiki.haskell.org/

o Exceptions - Expected but irregular situation at runtime
o Errors - Mistakes that can only be resolved by fixing the program

ð So an unhandled exception could be considered an error
- Four standard ways to handle exceptions and errors

Exception: basic functions handling exceptions from Control.Exception

- Use of throw:

*show: class, types that can be converted to String
*typeable: associate representation to types

- Use of try:

Error wouldn’t be thrown at let x = 5 ‘div’ 0 because of lazy evaluation: x = 5
‘div’ 0 isn’t evaluated until we use it. Therefore, we could use the function evaluate to
force early evaluation of x.

Errors:
When some function contains error, causing the evaluation to crash.

Here, head is taking in a list and return the first element in that list, and there would be an
error when head is used on an empty list.

error is a function that represents an error and a message.

We can catch these errors with evaluate and try above!

Error using Maybe:

Maybe represents the possibility of an error. When an operation falls, we use the Nothing
constructor, and when it doesn’t, we use the Just constructor to wrap our values.

Example: return the “Name : [name of person]” when we can find the name, and “no name
specified” when we can’t.

Error using Either

We would have two sides, Left and Right carrying a message. Left indicates an error and
Right indicates success.

For example: if we have an error called ParseError, we added the type to the method
signature.

And then we define the left and right clauses.

Sources:

https://wiki.haskell.org/Why_Haskell_matters
https://wiki.haskell.org/OOP_vs_type_classes
https://wiki.haskell.org/Abstract_data_type
http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/AbstractDataTypes.html
http://book.realworldhaskell.org/read/error-handling.html
http://book.realworldhaskell.org/read/defining-types-streamlining-
functions.html#deftypes.morecontrolled
https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://wiki.haskell.org/Error

