
Haiqa Kamran
Anna Goncharova
Al Mazzoli
Ashley Park
CMSC 245
Kumar
December 1st, 2020

Javascript Final Report

Javascript is a dynamic interpreted computer programming language that also has

object-oriented capabilities. Its purpose is to allow interaction between the user and the client on

web pages, and it is most commonly used alongside HTML and CSS. Javascript has five

primitive types that are passed by value: boolean, null, undefined, string, and number. All

primitive data types are immutable. The three other data types are array, function, and object,

which are passed by reference. The popular JavaScript run-time environment is Node.js.

JavaScript has control structures in the form of loops which are for, for-in, for-of, while, and

do-while as well as conditional control structures such as if, if-else, if-else-if, switch, break, and

labeled statements.

A subroutine is a way that programming languages handle control abstraction. When a

subroutine returns a value, it’s also called a function, and functions in JavaScript are treated as

objects. Basically, when the program gets to the function definition, it removes that part of the

code from the program and makes it into an object. Then the function only runs if it is

specifically called, unlike the “main” parts of the program, which run automatically. Something

that is cool about JavaScript in comparison to other programming languages when it comes to

subroutines is that subroutine objects in JavaScript, when they are defined as objects, remember

the variables that existed in the same scope environment as the subroutine definition. When the

subroutine is executed, then, it will first look at local variables that are passed to it, but if it can’t

find something it will also draw on the variables that existed in the same scope as the subroutine

definition at the moment that the definition was encountered and the subroutine object created.

Whatever the function returns is returned to the location where the function was called.

For a function in JavaScript, arguments that are passed by value are primitive data types

while the arguments passed by reference are object types (because object references are values).

This means that for primitive type variables, changes inside the function do not affect the

variable outside the function, however, for objects, changes inside the function are reflected on

the object outside the function as well. Moreover, JavaScript parameters are not specified by data

types in the function definition, and the maximum number of parameters in the function

definition are two-hundred and fifty-five. Furthermore, while passing the arguments inside the

function, one must make sure to pass them in the same order as the parameters defined by the

function. While the function does not type check the arguments, it also does not check for the

total number of arguments being passed. In this way, if there are less arguments passed than the

defined parameters, then the default is undefined. However, the default value for parameters can

also be set inside the function, and since the launch of ECMAScript 6, default values can be set

inside the function definition as well. Moreover, if the total number of arguments passed is more

than the defined parameters, then local variables are not generated for the extra arguments. To

overcome this, one can make use of the argument object which is a built-in type, and it carries an

array containing all the arguments that have been passed.

Runtime errors result in error objects being created and “thrown”. Like many other

programming languages, JavaScript’s most common form of exception handling is a try-catch. A

try-catch statement “tries” a block of code in which if an error is found, the next block of code

under “catch{“ is executed to handle the error. A finally statement can also be attached to the

bottom of a try-catch statement, and the block of code under it is executed whether or not an

error occurs. JavaScript also utilizes a throw statement to handle user-defined errors which

should be caught at some point later in the program. Related to exception handling, there is also

a one error method which provides information on the error that was found and programmers are

also able to make custom exception objects by extending the “Error” type.

Data abstraction is the programming process of creating a data type, usually a class, that

hides the details of the data representation in order to make the data type easier to work with. As

was mentioned in the last presentation, in Javascript variable type changes, depending on the

value that is assigned to the variable, which makes Javascript a weakly-typed language. Hence, it

does not have or need generics. It also does not have the classical built-in support for abstraction

like OOP languages, but it has user-defined objects, and OOP functionalities can be achieved by

inheritance and object composition(e.g. Linked List). Prototypes and closures can help us

accomplish data abstraction.

Prototypes are a Javascript concept, and each object has a property, which holds a link to

another object called its prototype. That prototype object has a prototype of its own, and so on

until an object is reached with null as its prototype. By definition, null has no prototype, and acts

as the final link in this prototype chain. Thus, the prototype chain is the mechanism of

inheritance in Javascript. That said, while Javascript does not have interfaces, which enable data

abstraction in Java, it is possible to “implement interfaces” in Javascript using prototypes.

Another mechanism that allows data abstraction in Javascript uses closures. A closure is the

combination of a function bundled together (enclosed) with references to its surrounding state

(the lexical environment), giving access to an outer function’s scope from an inner function. In

JavaScript, closures are created every time a function is created, at function creation time. They

are useful because they reduce the need for parameter passing , keeping information contained

within one block of code and thus hiding details that are not needed to be revealed. In addition,

similar to Java, Javascript has private and public object fields.

Works Cited

https://www.dummies.com/web-design-development/javascript/how-to-pass-and-use-arguments-to-code-with-javascript/
https://medium.com/@csg.riskgame/javascript-abstraction-data-types-and-expressions-b52767bb529e
https://study.com/academy/lesson/data-abstraction-definition-example.html
https://developer.mozilla.org/en-US/
https://www.youtube.com/watch?v=CQqwU2Ixu-U
Forget Everything You Know About Functions: JavaScript Subroutines | SitePen
Microsoft PowerPoint - 6-subroutines (unc.edu)

https://www.dummies.com/web-design-development/javascript/how-to-pass-and-use-arguments-to-code-with-javascript/
https://medium.com/@csg.riskgame/javascript-abstraction-data-types-and-expressions-b52767bb529e
https://developer.mozilla.org/en-US/
https://www.youtube.com/watch?v=CQqwU2Ixu-U
https://www.sitepen.com/blog/forget-everything-you-know-about-functions-javascript-subroutines#:~:text=Subroutine%20objects%20in%20JavaScript%20are%20objects%20referred%20to,variables%20were%20around%20it%20when%20it%20was%20declared.
http://www.cs.unc.edu/~jasleen/Courses/Fall11/slides/6A-subroutines.pdf

