
Lec 3: Go Intro

Why? C was designed in 1970 with those machines in mind. Go is C - 40 years later.

Biggest change — no explicity memory management (malloc and free). Rather more
java-like with new and garbage collection.

Put every different go program in a different folder.

put program files in files that end in .go

package main // REQUIRED

import “fmt" // won’t compile unless imports exactly match
uses (unlike java). do a search for “golang package fmt”

func main() { // the function to start the program. Should be
exactly one instance of a main function in a directory

 fmt.Println("hello geoff!”) // Do something!!!

}

Go has lots of packages. We will discuss this end of semester with modules and types in OO
programming.

go list …

Variables

	 lots of types :: usually you do not need to know. Go
figures it out

	 var i = 0

 var i int

	 i := 0

These are all equivalent. Go initializes all integers to 0
(second case). (All types have a “zero” value. Go figures out
that i is an int (first and third). := gives “short form”
initialization … “=“ does assignment “:=“ does initialization
and assignment

Go uses value model of variables (as does Java for primitive
types). As does C. So like C, go has pointers and the
complexities of referencing and dereferencing pointers. Will
talk about this in ch 6. Unlike C, go has garbage collection
(more on that in ch 8.5.3)

“Tuple Assignment”

package main

import "fmt"

func main() {

 j,k := 5, 20 // initialize j and k

 fmt.Printf("j:%d k:%d\n", j,k);

 k,j = j,k // swap j and k uses only one line!!!

 fmt.Printf("j:%d k:%d\n", j,k);

 l, m := mul(j,k) // call function and initialize l and m
for return values

 fmt.Printf("l:%d m:%f\n", l,m)

}

/**

* do something

* @param i an integer

* @param j an integer

* @return an integer and a float32

**/

func mul(i , j int) (int, float32) { // return two values

 ii := i*j;

 jj := float32(i) / float32(j); // casting

 return ii,jj

}

if and for

no parens, must have {}

package main

import "fmt"

func main() {

 ii,f1, f2 := 0,1,1

 for { // Go does not have a while loop! Just for with
nothing (or ;;) No Parens MUST {}

 ii++;

 f1,f2 = f2, (f1+f2)

 if f2<0 { // no parens must {}

 break

 }

 fmt.Printf("%d %d %d\n", ii, f1, f2)

 }

}

printf

%v	 the	value	in	a	default	format

	 when	printing	structs,	the	plus	flag	(%+v)	adds	field	names

%t	 the	word	true	or	false

%d	 base	10

%f	 decimal	point	but	no	exponent,	e.g.	123.456

%s	 the	uninterpreted	bytes	of	the	string	or	slice

\n	CR-LF

Scope — very much like java We will discuss scope in great
detail

arrays and slices

arrays — homegeneous collection with length fixed at compile
time

slice — somewhat Java ArrayList

see slic.go

also with slices you can get a piece

slice[start:end]

for example see remove fun in slice_go or slisli_go

Generics and make — look a lot like Java. Generics mostly apply
to libraries. In data structures you implememted a lot of
libraries. In this class you will mostly use. Current Go does
not have user definable generics

structs

much like java classes, with some different syntax. Structs
can have methods!

speed.go

Structs do “inherit” — somewhat

	 — embedding (embed.go)

	 — static (mostly) method binding (funcbind_go/funcbind.go)

	 	 contract with Java funcbind_go/FuncBind.java

	

Program across multiple files

In same directory

UNIX> mkdir AAA

UNIX cd AAA

UNIX> go mod init GGT/AAA

UNIX> go run .

VSC run button does not work.

Encapsulation and multiple directories:

Everything in a package is public to everything in the same
package. In other packages, capitalization indicates public to
other packages. See encap_go

Also note that fmt.Println, fmt is initial cap, hence is is
public from the fmt package.

