
Topic 6: Kotlin intro

Why Kotlin: Java is comically wordy, it requires lots of files, it has the weird “primitive types”, it
is almost paranoid about saftey, it is not friendly to functional programming (despite lambdas).
But OTOH, take advantage of all of Java’s class libraries and the fact that lots of people know
Java. The fact that it starts with a K is NOT a mistake. (C was the successor to B)

Contrast Java and Kotlin Hello world

	 see Topic06/hello/

To run a kotlin program — similar to java — compile into a target language then run using that
target language system. Most commonly, compile to Java (like javac). Can also generate
javascript and machine native code

To compile/run a kotlin program

	 kotlinc hw.kt -include-runtime -d hello.jar

	 	 where hw.ht contains the main function

this says to compile the program and put everything (and a lot more) into a jar file. jar is a java
extension of tar. Major extension is that the jar file can include a file that says whent he main
method to run is … MANIFEST.MF

	 java -jar hello.jar

	 	 a java jar file is basically a UNIX tar file with a special file that tells java what to
do.

	 	 Note that this jar file is LARGE

	 	 	

	 	 	 kotlin shows its youth, a couple of 1.5 Meg is no biggie but it is a
massive expansion from the 4 lines of code.

Object lives and bindings generally follow Java

	 No “primitive type” everything is an object. (Why make this choice? Is it a good one)

	 Has golbals that are statically allocated .. more or less given that programs run in JVM.

	 Heap based allocation and Garbage collection. But does not have Java “new” to
signal heap allocation

	 Allows (encourages) nested subroutines — see below

	 static scope

	 	 block scope

	 	 vars may have aliases

	 functions are first class variables.

	 	

	 function names may be overloaded, but not used as much in java thanks for optional
and named parameters in functions

	 has dynamic method dispatch

var and val.

var == variable. The thing is allowed to change

val == value. NOT allowed to change. equivalent to Java final

	 for functional programming will almost exclusively use val

	 function parameters in kotlin are always val!

Types:

	 Everything in kotlin is a class — does away with the java primitive types.

	 var x : String // IS THIS LEGAL // yes but causes problems — everything initializes to
null

	 	 so the first use of x must be assignment

	 	

	 	 val aaa: String // LEGAL also, but cannot be legally used as it is null — more on
null

	 var x : Int = 7

	 var x = 7

see 	 initial/init.kt

Type inference:

	 for var/val much line Go

	 val aa = 7 will infer that aa is of type Int, etc

	 val aa: Int = 7

	 error val aa:Int = 7.0

Kotlin is a reference-model language — everything is a reference. Likewise Kotlin is pass-by-
reference, EXCEPT that you are not allowed to change function params

	 initial/nc.kt

Note that you cannot change what is pointed to, but can change internals

	 also initial/nc.kt

	 Point mutable and immutable objects (mostly lists)

	 	 Go: immutable? No? (strings)?

Mutable Go objects:

• arrays and slices

• maps

• channels

• closures which are capturing at least 1 variable from the outer scope

Immutable Go objects:

• interfaces

• booleans, numeric values (including values of type int)

• strings

• pointers

	 	

How to test for immutability in Go?

	 Strings see go_immut/imm.go

Java: String, Numbers are immutable

	 for instance, String has getChar, but not setChar (same idea as Go)

Will be using Kotlin for functional programming so will largely ignore things like all loop
constructs

Output

	 just “println”

	 To get formatted output use Java String.format(“FORMAT STRING”, args)

	 	 FORMAT STRING is much the same as Go fmt.Printf, (but no %v)

	 There is another way similar to Bash printing, use it if you want.

function and methods

	 may be declared inside a class (a method) or outside (a function)

	 fun xx(p1:type1, 22: type2) : returnType { … }

	 fun yy(p1:type1) = expression

	 for example:

	 	 fun lesser(p1:Int, p2:Int) = if (p1>p2) { p2 } else { p1 }

	 	 Here note

	 	 	 NO RETURN.

	 	 	 No return value type (kotlin infers it)

	 	 	 if statement can return a value and

	 	 	 	 when it does kotlin requires an else clause (so not return null)

	 	 	 for functions that are just an expression Kotlin will infer type

	 	 	 	 fun lesser(p1:Int, p2:Int) = if (p1>p2) { p2 } else { p1.toDouble() }

	 	 	 	 	 here return type is “Any”, the Kotlin equivalent to Java
Object

will come back to functions as there is a LOT more

	 	 	

	 	

No “tuple assignment” as in Go. When want to return multiple values from function, prefered
approach is to use a “data class”.

Classes

	 do not require separate file if public

	 	 Note in class declaration may use var/val (unlike functions)

	 default is “public final” — unlike java where unspecified is “package” in kotlin it is public

	 see classes/define.kt

	 	 GO THROUGH THIS EXAMPLE SLOWLY!!!!

	 to make classes NOT final add “open” to declaration

	 when overriding a function must say so. (Unlike java optional @Override annotation

	 automatic constructor for items listed in the class declaration

	 	 can have other constructors

	 	 classes/twocon.kt

	

“Data classes”

	 a standard class Plus

	 	 automatic generation of getters (and setters if properties are not val)

	 	 automatic useful equals (not pointer identity)

	 	 see classes/datacl.kt

Any — equivalent to “Object”

Null safety!

	 “types default to non-nullable. However, if something can produce a null result, you
must append a ? to the type name to explicitly tag the result as nullable

	 elvis/elvis.kt

	 	 again, slow!

	

Operator overloading

	 can define the behavior of + on a class

	 can redefine == on a class!

Exceptions

	 just like Java “try .. catch”

	 We will largely ignore exceptions to the extent we can

	 No required try/catch in Kotlin — is this good? Will come back to

Lists

	 val ints = listOf(1,2,3,4,5)

	 OR

	 val ints = mutableListOf(1,2,3,4,5)

	 ints.add(6)

functions

	 fun name(varname:varType):rtnType { stuff }

	 fun name(varname:varType) = statement or expression

	 	 if expression Kotlin infers type

	 val fff = fun(varname:vartype):returnType { stuff }

	 	 anonymous function

	 	

	 see funcs/funclist.kt

	 	 uses tail recursion to print the elements of a list

	 	 * Four things in this program .

	 	 	 * first, a function using generics

	 	 	 * second, a recursive function

	 	 	 * third, tell the compiler to optimize for tail recursion

	 	 	 * fourth, head and test functions on a list to create a recursive function to
step through a list

	 	 Issues with this program

	 	 	 1. depending on implementation of list, this could be very inefficient

	 	 	 2. what happens when list is null?

	 	 	 3. Kind of boring tail recursion as function does not return anything

	 see funcs/funclist2.kt

	 	 use tailrec to sum list

	 	 * 1. Kotlin allows default values for function parameters

	 	 * 2. Given default values, kotlin allows named parameters in function call

	 	 * 3. The "elvis" operator. "?". This allows the parameter to

	 	 * be null. It also REQUIRES that null be explicitly handled

	 	 * This pairling allows Kotlin to be "null safe"

funcs/funclist3.kt

* This one, instead of gettign the head and recurring on

* the rest of the list, does everything positionally. Depending

* on the implementation of the list, this version may be much

* faster, or must slower, than the other version

funcs/funclist4.kt

Another list summer. This time use an internal recursive function so

* that you check base conditions before going into recursion.

* This should, this be a little quicker than the previous version

funcs/funclist5.kt

final version of summer. Here rather than returning sum return a function that sums the list.

* Note the use of a closure on b3.

* To return a function, it must be anonymous

funcs/funclist6.kt

Anonymous funs and recursion.

	 same game as Go with predeclare does not quite work

	 	 because of Definite Assignment

	 	 Kotlin has an out “lateinit” tag on a variable

	 	 OTOH, because kotlin allows nesting of named functions this is not as much of
an issue. (Still can be very useful if have recursive returned functions (Ouch and yuck)

Inheritance and extension

	 class must be marked as “open” to do inheritance

	 functions must be marked as open to be overridden

	

	 inheritance and extension

	 	 see classes/clss.kt

	 Extension function do NOT behave like member functions

	 	 inherited?

	 	 static dispatch!

	 	 see classes/extn.kt

	

