
Notes 7: functional programing

functional programming languages usually provide:

	 first class functions

	 	 first class

	 	 	 can be passed into function

	 	 	 can be returned from function

	 	 	 can be set to a variable

	 	 second class

	 	 	 passed into function

	 	 Third class

	 	 	 none of the above

	 higher-rder functions

	 	 take a function as a parameter

	 	 and or return a function

	 polymorphism

	 	 functions can work on lots of things

	 list types and list operators

	 	 lists are naturally recursive beasts or can be handled recursively with ease

	 structured function returns

	 	 return more than one thing

	 constructors for structured objects

	 	 make a block at one time

	 garbage collection

	 	 this is required if you have variables with unlimited extent. (which you get with
closures)

	

Kotlin and Functional Programming

	 first class — YES

	 higher-order — YES

	 Polymorph — YES — via object hierarchy and generics

	 structure return — YES — especially with data classes

	 Constructors — YES

	 GC — absolutely

map/fold and lambda expressions

lambda — a shorthand notation — most often used for single line anonymous functions

	 lambda/simple.kt

	 	 intro to lambda expressions

	 lambda/map.kt

	 	 lambda expressions and map/fold functions on list

	 	 also filter, any, all, none, find, count

	 	 these work on all collections (list, set, map)

Currying

	 Suppose you have a function with 4 params. In one section of your code 3 of the 4 are
always the same.

	 Currying means to create a new function with the three preset!

	 see curry/curry.kt

Compare speed of Kotlin and Go

will use sorting of integer lists for the comparisons

	 Go: speed_go/

	 	 sort a slice of structs

	 	 by casting, can change the sort sort field

	 	 	 10,000,000 sort int takes 2.2 seconds

	 	 	 10,000,000 sort string (len 6) takes 7.9 sec (about 2 sec to build, 6 sec to
sort)

	 	 Other than the particulars of Go, a fairly standard imperative program

	 Kotlin: speed_kt/

function programming and top down thinking

	 “top down programming” is what you have been taught.

	 start with statement of problem, design classes, design function interfaces, write …

	 Linked to a method of software development “waterfall”

	 functional programming is “bottom up”.

	 	 start by writing a program to do one little piece of task. Make sure it works.

	 	 write another function ….

	 	 The final program ends up being a fairly simple assembly of the pieces.

	 	 You know it will work, because all of the pieces are easily and independently
testable because each function depends only on its parameters

	 	 In functional programming you ALWAYS have something that works.

	 	 	 May not do everything, but it does things correctly

	 	

finally a full thing in functional Kotlin

the zip code lookup assignment

	 hw2/hw2.kt

CONCLUSION

Functional programming does not preclude using loops, variables or mutable objects. You just
have to use them thoughtfully. In particular, you MUST ensure that functions, on a give set of
input, ALWAYS do that same thing.

