
Topic 8: Types

2 basic questions : what / why

What??

	 bits are untyped!!!

	 most basic: a type defines how many, and how, to interpret bits.

	 also—the set of operations that are allowed it.

	 	 primitive types “built in” — usually at hardware level

	 	 	 different from Java int, …

	 	 composite types

Why?:

1. Types supply context — Useful for compiler as it specified what to do

2. Limit what is allowed to be done

3. MAke the program more readable to user — effectively a form of documentation —

especially useful when there are a lot of types (OO langs). So why type inference?

4. Compile time optimization

Type system:

	 1. mechanism to define types

	 2. Definition of

	 	 type equivalence

	 	 	 structural vs name

	 	 type compatability

	 	 	 what is allowed with what

	 	 	 for + suppose one is Int, what is the other allowed to be

	 	 	 	 in a weakly typed anythng

	 	 	 	 Go, Java, Kotlin

	 	 type inference (may not be available in some langs)

“primitive types” vs composite types

	 composites in next chapter

	 	 struct, array, set, pointers, list, file

	 Primitive — int (at what precision?) should a lang care about precision?

	 	 character? ASCII, 16-bit ascii? rune? UTF-8

	 enums — primitive or composite. Why???? How??

	 	 consecutive integers? Powers of two?

Do functions have types?

	 Why?

	 If they are first or second class, they do.

Strongly typed — language prohibits even trying to do something that is not allowed for a type.
Thrown out at compile

Weak—usually implies doing more work at run time — strong==fast

	 for instance, to make the “+” work, javascript must do what?

	 	 can interpreted language be strongly typed?

	 realistically this is a spectrum. Language may have holes …

	 weakly typed —ex language allows application of operators when it does not make
necessarily make sense. For instance, javascript is weakly typed (and dynamically typed)

	 	 f = some function

	 	 q = 5 + f

	 	 	 Go? Kotlin? Javascript?

Statically typed — strong AND type checking is a compile time.

Polymorphism

	 Generics == “Explicit parametric polymorphism”

	 	 implemented at compile time!!!

	 subtype polymorphism — common in OO languages — allow uses of subtype where
base type is specified.

Lots of types

Basic type: integer, float …

	 Intergers

	 	 Java: byte, short, int, long. Also, Byte, Short, Integer, Long, BigInteger!!!

	 	 Kotlin: Byte, Int, Long, Short

	 	 	 What does kotlin get by dumping primitive types? Cost?

	 	 Go: [u[int[8,16,32,64]

	 	 Why so many int types???

	 char — what is a char?

	 	 one byte — ASCII

	 	 	 char in c

	 	 2 bytes — UNICODE16 — JAVA

	 	 	 char in Java

	 	 Up to 4 bytes — UTF8 —- variable

	 	 	 0xxxxxxx — 1 byte — plain old ASCII

	 	 	 110xxxxx 10xxxxxx —-

	 	 	 1110xxxx 10xxxxxx 10xxxxxx

	 	 	 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

	 	 	 “rune” in Go

	 	

	 is String a basic type?

	 	 in Java? C? Go?

	 	 	 Java — NO..it is a class

	 	 	 	 (Are classes in java.lang really “basic” to Java??

	 	 	 	 You cannot do ANYTHING without java.lang.Object

	 	 	 	 To know would have to look at implemenation of String class

	 	 	 C — definitely NOT

	 	 	 Go — from book “a string contains an array of bytes that, once created,
is immutable”

	 	 	 	 This indicates that string is a composite type

	 	 	 	 Going further Go explicitly mirrors string functions with byte array
functions

	 	 	 	 OTOH — “The underling ty[e of every constant is a basic type”
boolean, string or number”

	

	 Enumerated types

	 	 What: a type that has a specific, finite (usually small), and bounded set of
possible values.

	 	 Why?

	 	 Go: enum_go/enum.go

	 	 	 They do not really exist like in other languages so you get little benefit

	 	 Kotlin: enum_kt/emun.kt

	 	 	 real enums

	 	 	 	 checking and assignment

	 	 	 	 switch (when) expression

	 Composite (aggregate) types

	 	 Array

	 	 	 in Go array slze is set at compile time!!!

	 	 	 	 Why???

	 	 	 	 func t5() {

 	 	 	 	 	 ar := [3]int{1,2,3}

	 	 	 	 	 fmt.Println(ar[5])

 	 	 	 	 	 for i:=0; i<5;i++ {

 	 	 	 	 	 	 fmt.Println(ar[i])

 	 	 	 	 	 }}

	 	 	 	 Arrays can be allocated on stack!! Faster.

	 	 	 	 In above example, bounds check at compile time???

	 	 	 	 Arrays contain objects — stick with value-model language

	 	 	 Java, Kotlin?

	 	 Slice / ArrayList

	 	 	 Go: “unlike array alements, the elements of a slice are indirect”

	 	 	 	 slices contain references!!!!

	 	 	 	 slices are built on top of arrays! How, given that arrays have a
fixed size at compile time? (Trick reserved to language builders)

	 	 structs

	 	 sets

	 	 lists — no ordering

	 	 	 traditionally heavily used in functional programming

	 	 	 IMHO — because Lisp did it (Lisp == LISt Processing)

	 	 files

	 Type checking

	 	 obvious and handled by compiler in Java

	 	 Go,Kotlin often do not require explicit types

	 	 	 type inference

	 	 	 	 why have type inference?

	 	 	 	 	 you loose the readability of the implicit documentation

	 	 	 	 	 what do you gain?

	 When are two types the same???

	 	 structural vs name equivalence

	 	 	 structural

	 	 	 	 same order, or just same number and kind?

	 	 	 	 what work needs to be done to get this?

	 	 	 	 what does Go/Kotlin do?

	 	 	 	 	 why not use structural equivalence?

	 	 	 name

	 	 	 	 what about type aliases?

	 	 	 see topic08/equals_kt/equals.kt

	 	 	 	 cannot easily override == to give structural equivalence

	 	 what are Go, Kotlin, Java

	 	 Go: equiv_go/equiv.go

	 	 	 strict name equivalence

	 	 Kotlin: equiv_kt/equiv.kt

	 	 	 loose name equivalence

	 	 	 	 casting allowed

	 	 Java: no typealias, otherwise like Kotlin

Casting — converting from one type to another

	 in strongly types languages “weird” casts are not allowed

func t5() {

 str := "abc"

 fmt.Println(str)

 var num int64

 num=40

 fmt.Println(num)

 num = int64(str) // Compiler flags as not allowed

}

	 Problem is that casting requires changing bits and you have to know how.

	 	 what is the problem with changing bits???

	 Some langns allow “non-converting” casts. That is, do not change bits just interpret
bits differently. What is problem? (C does this)

	

	 type coercion

	 	 allow 3+2.4 without explicit casing

	 	 	 pros/cons

Type inference:

	 kotlin, go does it:

	 	 infer_go

	 	 infer_kt

Advantages / disadvantages of type inference (in a strongly typed language)???

When are two objects the same?

	 Deep vs shallow checks?

	 	 Java == vs equals

	 	 Kotlin == vs ===

	 	 	 Note: in Kotlin equals method overrides ==!

	 Deep vs shallow assignment

	 	 Only applied to reference model languages

	 	 	 see copy_go

	 	 Value languages effectively always deep copy

	 	 Shallow

	 	 	 copy and assign pointer

	 	 	 make a new copy of object and assign.

	 	 Kotlin,Java — shallow. Why???

	 	 	 equal_kt

KOTLIN: For values represented by primitive types at runtime (for example, Int), the ===
equality check is equivalent to the == check.

