
Composite types

Ch 8 Scott

The line between “built-in and composite types is thin

Is a string built in?

	 Not in C

What defines a composite type?

Record / structs

	 Go - struct

	 Kotlin — any class, but especially data classes (Data classes are really supposed to
have no code)

	 Why have records?

	 Implications of reference model vs value model on records

	 Is Go anonymous include equivalent to inheritance in Java/Kotlin??

	 copy

	 	 a <= b

	 	 what is difference in Go and Kotlin

	 	 	 again value-model vs reference model language

	 	 	 copy and copy constructors in Kotlin. (clone in Java — big debates over
it)

	 	 	 see equal_go and copy_kt

	 	 	 	 in particular, for go show the addresses of objects in equal_go

	

Arrays

	 usually homogenous type

	 	 	 Why homogenous????

	 	 	 	 value-model language it is kind of required

	 	 Java / Kotlin since everything inherits for Object can make non-homo array

	 	 	 easy in reference model language

	 	 	 Note that similar game is harder in value model Go

	 usually contiguous in memory

	

	 Go — arrays MUST be sized at compile time!! (Why?)

	 	 arrays contain the objects, literally. So each spot in otherwise “empty” array
actually contains the sting with zero value(s).

	 Kotlin — Arrays contain references (what a shock)

	 Go — slices contain REFERENCES!!! Why? SO?

	 	 consider difference between

	 	 a := b for array and slice in Go

	 	 	 for array, everything is new! Copying can be expensive

	 	 	 for slice, the address of the slice is new (value model)

	 	 	 	 but all the content is the SAME (copy the references)

	 	 	 WHY?

	 Subsections of arrays

	 	 go slice[start:end] returns that part of slice between start and end

	 	 kotlin — array.slice(start..end)

	 	 	 slice takes array and returns a list!!! Why not array ?

	 	 	 Also list.sublist(start..end)

	 	 	 	 slice is a new object, sublist pointer within existing list

	 	 Java: neither arrays not ArrayList have subsections built in.

	 	 	 Write?

	 Heap allocation vs stack allocation!!!

	 Row-Major & Column major ordering

	 	 assumes array contained in contiguous block of memory

	 	 Looking at pointer addresses in Go you can see this.

	 	 Suppose A is 7x10 array

	 	 R-M

	 	 	 A[2,4] followed by A[2,5] … a[2,6],a[3,0]

	 	 C-M

	 	 	 a[2,4], a[3,4] … a[9,4],a[0,5]

	 	 Why do I care?

	 	 	 Max performance says always access memory locations near each other

	 	 	 so nested for loop for R-M

	 	 	 	 for i 0..6

	 	 	 	 	 for j 0..9

	 	 	 	 	 	 a[i][j]

	 	 	 For C-M

	 	 	 	 for j 0..9

	 	 	 	 	 for i 0..6

	 	 	 	 	 	 a[i][j]

	 	 	 Easy to build multi-d array in RM

	

Composite equality checks

Go == on structs compares the stuff inside — a deep check. (again, kind of natural in value
model)

	 	 Go defines == over array and does a deep check!!!

	 	 	 no == over slices!!! Why? (slices could contain themselves, Why is this a
problem?)

	 	 see equal_kt, equal_go

Associative arrays (maps), sparse arrays, …

	 are these really arrays? Or are they something else that just uses the same syntax?

Strings:

	 are they a primitive type int he language

	 	 C — definitely not

	 	 Java, Go, Kotlin — might as well be.

	 	 	 J,K,G — String is a fixed entity. A length change (append) makes new
string

	 	 	 	 Java StringBuffer, StringBuilder

	 	 	 Go: “A string is an immutable sequence of bytes”

Recursive types

	 E.g. Linked lists

	 	 In reference model languages these are natural

	 	 How to Handle in Value-model langs like Go.

	 Answer Pointers!!!

	 	 see pointer_go

	 	 see tree_go — lots of points to make

	 	 	

new operator in Go / Java allocates from heap.

	 stack allocation auto reclaimed when frame complete (closures aside), but heap is
forever!

Garbage collection

	 Reference Counting

	 	 when the number of references goes to zero, reclaim

	 	 	 problem — circular structures

	 	 	 problem, how to count

	 	 	 fragmentation of memory

	 Mark-and-sweep

	 	 1. mark everything as useless

	 	 2. start with all non-heap pointers and recursively follow. Mark everything
touches as good

	 	 3.Go through heap and destroy everything not marked as good

	 Stop and Copy

	 	 split memory in half

	 	 Rather than mark and sweep, in step 2, copy from current to new. Then delete
anything not copied. Next time, switch current and new

Lists, etc

	 difference between list and array?

	 pointer following?

	 typically not indexed, but lists in Kotlin are

	 Go: no list type?

	 Homogeneous vs heterogenous

	 Opinion: lists are associated with functional programming because they are one with
LISP. Otherwise, lists are fairly boring.

LISP and the ability of LISP to write/run code . Maybe a little in Emacs? (or not)

	

