
Topic 10

Subroutines

Ch 9 in Scott

	 return value — function

	 no return — procedure

	 associated with structure/class — method (regardless of return)

Skip 9.1 & 9.2 Mostly.

Quickly, What happens when you make a subroutine call

	 1. Compute (as needed) value of arguments to called subroutine

	 2. if a nested subroutine — the “static link” ie what variables are available to nested sub
from its surrounding subroutine

	 	 how is static link distinct from closure? Closures are about functions that are
defined, but then executed later. Static link is about functions executed now. So they refer to
largely the same thing; but with different uses. Also closures can get outside the function in
which they were defined.

the callee — on starting:

	 3. Pass return location of the calling function

	 4. Add all of this to the “call stack”

Parameter passing:

	 Two basics

	 	 pass by value

	 	 pass by reference

	 	 These generally follow the from value-model and reference-model languages.

	 	 	 Exceptions: Java — primitive types

	 	 	 	 	 Go — pointers

	 	 	 	 	 	 Can change the thing pointed to but if try to
change the passed pointer, that change does not survive!

	 	 	 	 see passpoint_go/

	 	 	 So go is essentially passing the pointer by value!

	 	 Kotlin: does not allow change the ref of ANY passed var. All params are “val”.
This makes kotlin (and Java) “call by sharing”

	 	 	 see passref_kt

	 	 	 see alos passobj_kt

	 	 Note that is kotin, when you cannot change the location of the pointer, you can
change what is inside

	 What have pass by reference

	 	 effectively allows function to return multiple values (dangerous and NOT
functional)

	 	 PbV on large structs can be expensive

Closures — again

	 when functions are passed in kotlin (and Go) they are passed with their closure (if
closure exists) (when will it not?)

	 For instance see clous1_go/1

	 Question what happens when change values in closure AFTER function defintion

	 	 drr clous1_go/2

	 Java — functions are NOT first class so cannot be passed so closures are not a thing

	 	 Instead “Object closures”. Idea, define an object with method and vars. Then
pass the objects. The receiver knows to use the method defined within the object. This is
used a lot in Android to get “callbacks” and more generally in multithreadedprograms.

	 	 Illustrative example of callback?

	 	 For instance, downloading stuff from web. By rule in Android, this must be done
in a separate thread. When download complete, want to notify the “main thread” and have it
put up a “complete/fail” message. So, pass in an instance of something like

public class Downer {

	 String url = “https://getme.com/123.jpg"

	 CallbackClass cc = xxx;

	 public void onDownLoadDone(String res) {

	 	 xxx.downloadDone(res);

 }

}

	

	

Optional parameters

	 “Go has no concept of default parameters nor any way to specify arguments by name”

	 	 Why not?

	 Go does not allow overloading of function names

	 	 Why Not?

	 Kotlin allows both named parameters and overloading.

	 	 Do you really need both?

	 	 Java overloading only

	 Variable number of args

	 	 Go — YES

	 	 	 the print statement

	 	 	 see also varadic_go

	 	 	 	 clever user of functions — but is this clearer??

	 	 Kotlin/Java YES

	 	 	 kotlin see varidic_kt

	 	 	 	 syntax-wise I think this is pretty clear — certainly more so than
Java	 	 	

Function returns

	 1. Should functions allow return statement other than at the end?

	 Go: multiple return values; see return_go

	 Go: named return values; see return_go

	 	 are these good?

	 Kotlin does not have multiple returns. Why not? Are they needed?

Exceptions:

	 Kotlin:

	 	 try-catch like Java except you are never required to have try/catch!

	 	 	 Why?

	 	 	 	 https://radio-weblogs.com/0122027/stories/2003/04/01/
JavasCheckedExceptionsWereAMistake.html

	 Handling in Go

	 	 basic approach, lots of functions return two values

	 	 	 desired value, error

	 	 	 see basicexcep_go/

	 	 when normal, err value is 0 (nil).

	 	 when problem, normal value is 0 (possibly) and error value is non-0

	 	 So, how does func set that non-nil error?

https://getme.com/123.jpg

	 	 	 1. error prevention — do not just open a file and try to read, then get
exception when file does not exist. First check that file exists. Yes, programmer has to do this.

	 	 	 2. PANIC. panics are the equivalent of a thrown exception in Java/Kotlin

	 	 	 	 if not “caught”, program dies. BUT catch without try catch???

	 	 Note: “giving up is usually the right response to a panic, but not always”

	 More generally, problems. Answer, catch with a function that is guaranteed to run at the
end of a function kind of like try {} finally{} in Java

	 in Go “defer” == run just before function completes.

	 	 So defer is part of the language

	 	 inside deferred function call “recover()”. If execute while NOT in panic, return
null. if return NOT null, then panicing!!!

	 So, how do you get a func to return an error value is the only way to catch the error val
is done by a function that must run as the last thing in a function??? A By having the actual
work done in an inner function!! see except1/go/betterPanic()

	 OR

	 use go named return values and set the value of the named returns inside the deferred
fun see except1/betterPanic2()

	 	 This use case may be logic behind named returns

	

Text — exception Handling

	 3 methods of dealing with exceptions without explicit exception handling mechanism

	 	 1. Return one value with special values indicating that things went wrong. For
instance, if function is supposed to return a positive integer, return -1 to indicate an error

	 	 2. Return a status in addition to value (in a multiple return language). The is he
general approach taken by Go, with the Panic as a bonus

	 	 3. Caller returns a closure containing an error handling function.

	 From booK: 1 is difficult to generalize, 2 and 3 can introduce new errors and
obfuscatory ..

So what does Go take option 2?

	 it does not.

	 Programmer should do stuff to prevent problems. If unable to prevent, only then,
maybe, panic and die.

	 Problems with catching exceptions someplace other than the func in which they
occurred — need to unwind the stack!!!!

3 goals of exception handlers:

	 A. compensate for exception to allow program to recover

	 B. Clean up and re-thow so someone else can hanlde

	 C. Print an error message.

Events

	 also “event-driven programming”

	 Point — the program might be doing other things, it is NOT just waiting on the event

	 events are “something to which a running program needs to responds, but which
occurs outside the program, at an unpredictable time.”

	 	 GUI input

	 	 Network events (read URL)

	 Synchronous handlers

	 	 program is single threaded, event interrupts whatever the program had been
doing; does its work, then is gone. Can be handled kind of like any subroutine call.

	 Threaded Handlers

	 	 most modern programming languages

	 	 	 Problem, how to handle data structure use clashes between threads.

	 	 	 	 Java synchronized. ArrayList vs Vector. All the methods of
Vector is synchronized. But, the methods of ArrayList is not synchronized.

	 	 	 	 See speed_kt/speed.kt

	 	 	 	 	 this is a small, but detectable slowdown for vector.

	 MAYbe MAKE LAST TOPIC OF SEMESTER PARALLEL PROGRAMMING IN GO?

	 	

