
Aug 30

www

Welcome

What is “Programming Languages”? as a course — at least as far as I am teaching it

	 Study of the features of programming languages: why and how those features exist and
how to make the best use of those features.

	 NOT emphasizing how those features can be implemented, but how those features are
best used

	 Objectives:

	 	 give background for choosing appropriate language for programming problem

	 	 increase ability to lean a new programming language

	 	 increase ways in which you you can express and implement programming
concepts (know how and why to choose)

	 	 understand obscure language features

All the languages are turning complete (from wikipedia)

In computability theory, a system of data-manipulation rules (such as a
computer's instruction set, a programming language, or a cellular
automaton) is said to be Turing-complete or computationally universal if
it can be used to simulate any Turing machine. This means that this system
is able to recognize or decide other data-manipulation rule sets. Turing
completeness is used as a way to express the power of such a data-
manipulation rule set. Virtually all programming languages today are
Turing-complete. The concept is named after English mathematician and
computer scientist Alan Turing.
A related concept is that of Turing equivalence – two computers P and Q
are called equivalent if P can simulate Q and Q can simulate P.
The Church–Turing thesis conjectures that any function whose values can
be computed by an algorithm can be computed by a Turing machine, and
therefore that if any real-world computer can simulate a Turing machine, it
is Turing equivalent to a Turing machine. A universal Turing machine can
be used to simulate any Turing machine and by extension the
computational aspects of any possible real-world computer.[NB 1]

To show that something is Turing-complete, it is enough to show that it can
be used to simulate some Turing-complete system. For example,
an imperative language is Turing-complete if it has conditional
branching (e.g., "if" and "goto" statements, or a "branch if zero" instruction;
see one-instruction set computer) and the ability to change an arbitrary
amount of memory (e.g., the ability to maintain an arbitrary number of data
items). Of course, no physical system can have infinite memory; but if the

https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_completeness#cite_note-1
https://en.wikipedia.org/wiki/Imperative_language
https://en.wikipedia.org/wiki/Conditional_branching
https://en.wikipedia.org/wiki/Conditional_branching
https://en.wikipedia.org/wiki/One-instruction_set_computer
https://en.wikipedia.org/wiki/Computer_memory

limitation of finite memory is ignored, most programming languages are
otherwise Turing-complete.

Go through course web page

Not a programming heavy course … again aim is to think

Survey of Programming languages people have used

or simply have heard of

Language family tree show where Java , C, Go and Elixir all fit

That said, writing programs in two languages — Go and Elixir.

Why Go and Elixir:

	

Go

	 imperative programming

	 	 procedures are often exectuted for side effects

	 	 	 Lots of variables that are set and values changes frequently.

	 	 	 what is a side effect?

	 	 	 how many Java methods have you written that return void?

	 	 	

Elixir

	 Almost pure functional programming (if we get technical, the print statement is not
“pure”)

	 Actually built on top of the Erlang VM (agner karup)

	 No variables (there are constants)

	 	 no for loops

	 	 every function returns a value

	 	 the result of a function is dependent only on its arguments

	 	 programs can be “proven” correct

GO:

package main

import "fmt"

func main() {

 fmt.Println("hello geoff!")

}

Elixir:

IO.puts("Hello world")

There is a lab On Wednesday!

There is homework already posted on class web site!

