
About the Scott Text: Scott mentions a LOT of PLs. I will only discuss Go, Elixir, Java
in detail and will only expect you to know about those. Also probably mention C and
Python. (So if you find yourself reading about the details of C++, red this only for key
concepts, not details.)

Lec 3: Go Intro

Why? C was designed in 1970 with those machines in mind. Go is C - 40 years later.

Biggest change — no explicit memory management (malloc and free). Rather more
java-like with new and garbage collection.

Green comparison between Go and C

	 numbers from whiteboard.

	 factoring:

	 	 C to 1,000,000: 1.8sec

	 	 Go to 1,000,000: 4.6 sec

Go (in PL jargon):

	 imperative

	 statically scoped

	 functions are first class

	 static variable types

	 strongly typed

	 pass-by-by-value

	 return-by-value

Writing Go:
Put every different go program in a different folder.

put program files in files that end in .go

in the main directory for a program (you will usually only have one directory)

	 go mod init aaa/bbb

aaa/bbb does not matter. (This is used in large team development)

package main // REQUIRED

import "fmt" // won’t compile unless imports exactly match
uses (unlike java).

func main() { // the function to start the program. Should be
exactly one instance of a main function in a directory

 fmt.Println("hello geoff!") // Do something!!!

}

See hw.go

Note semi-colon allowed but not required

	 Good/bad/yawn?

Once you have a program file:

	 go run xxx.go

OR

	 go build -o xxx xxx.go

	 xxx

Go has lots of packages. We will discuss later. (VSC will automatically add imports.)

Variables

	 lots of types :: usually you do not need to know. Go
figures it out

	 var i = 0

 var i int

	 var i int = 7

	 i := 0

These are all mostly equivalent. Go initializes all integers to
0 (second case). (All types have a “zero” value. Go figures out
that i is an int (first and third). := gives “short form”
initialization … “=“ does assignment “:=“ does initialization
and assignment

Type Coercion:

	 in Java

	 	 int iinntt = 7;

	 	 long lloonngg = 7;

	 	 boolean bboo = iinntt==lloonngg;

	 perfectly legal

No type coercion in Go

	 var i int16 = 7

	 var j int32 = 7

	 kk := i==j // not allowed, will not compile

So need to cast

	 kk := i==int16(j)

Why does go not have type coercion??

Go uses value model of variables (as does Java for primitive
types). As does C. So like C, go has pointers and the
complexities of referencing and dereferencing pointers. Will
talk about this in ch 6. Unlike C, go has garbage collection
(more on that in ch 8.5.3)

type inference

	 k := 5 # infer int (not int32, or int64, …)

	 j := 17.0 (infer float64)

	 i := “A string”

	 One of the nice things about explicit typing is that it is
a form of documentation. With type inference you loose this.
What is gain? Is gain worthwhile?

Go uses pass and return by value

see pbv.go

Note the way in which Go declares functions

“Tuple Assignment” and tuple return from procedure

See tupl_go/tuple.go

	 Note Go does not have an explicit tuple type (elixir does)

if and for

no parens required, must have {}

package main

import "fmt"

func main() {

 ii,f1, f2 := 0,1,1

 for { // Go does not have a while loop! Just for with
nothing (or ;;) No Parens MUST {}

 ii++;

 f1,f2 = f2, (f1+f2)

 if f2<0 { // no parens must {}

 break

 }

 fmt.Printf("%d %d %d\n", ii, f1, f2)

 }

}

See also fibb_go/fibb.go

Scope — very much like java We will discuss scope in great
detail

arrays and slices

arrays — homogeneous collection with length fixed at compile
time spaces for all arrays are allocated at compile time

“the size of an array is a part of its type”

Arrays pass and return by value

	 DIFFERENT FROM JAVA

	 Like Java, an error to read off the end of an array

	 	 C does not throw an error in this case

	 	 Reading off the end of the array is why Hoare invented
null

	 see array_go/array.go

Also, Go had guaranteed zero assignment. Java “definite
assignment” errors, C whatever

	 see Defin.java

slice — somewhat Java ArrayList

slice a run-time allocated piece of memory. When you make a
slice you really have a pointer a memory location.

see slic.go

also with slices you can get a piece

slice[start:end]

for example see remove fun in slice_go or slisli_go

When you pass a slice to a function, you pass the memory
location pointer.

see slifunapp

structs

much like java classes, with some different syntax. Structs
can have methods!

	 speed.go

Structs do “inherit” — somewhat

	 — embedding (embed.go)

	 — static method binding (funcbind_go/funcbind.go)

	 	 contrast with Java funcbind_go/FuncBind.java

Statements and Expressions

	 statement = done for side effect only (eg print statement)
no return value

	 expression = may have side effect but also returns a value

	

	 in Java ++ is an expression (j++)

	 so order/Order.java compiles and runs. (what is printed?)

	 In Go ++ is a statement. So the equivalent program does not
compile

	 	 Was this a good decision by Go designers?

Command Line Arguments

NOT in main function (a la Java / C)

rather in os package

see comlin_go

	 Advantages/disadvantages?

fmt.Printf

%v	 the	value	in	a	default	format

	 when	printing	structs,	the	plus	flag	(%+v)	adds	field	names

%t	 the	word	true	or	false

%d	 base	10

%f	 decimal	point	but	no	exponent,	e.g.	123.456

%s	 the	uninterpreted	bytes	of	the	string	or	slice

\n	CR-LF

Strings UTF-8

	 1-4 bytes to encode a character

	 1 byte for ASCII chars

	 if start with:	 	 0 then 1 byte

	 	 	 	 	 	 only 7 usable bits

	 	 	 	 	 110 2 bytes each byte begins 10

	 	 	 	 	 	 so only 11 usable bits

	 	 	 	 	 1110 3 bytes then each byte begins 10

	 	 	 	 	 	 so 16 usable bytes

	 	 	 	 	 11110 3 bytes, each byte begins 10

	 	 	 	 	 	 so 21 usable types

	

Program across multiple files

In same directory

UNIX> mkdir AAA

UNIX cd AAA

UNIX> go mod init GGT/AAA /// GGT/AAA can be anything,
except .

UNIX> go run . /// doc says to use everything in current
directory. If explicitly name file, then all you get is that
file

Encapsulation and multiple directories:

Everything in a package is public to everything in the same
package. In other packages, capitalization indicates public to
other packages. See encap_go

Also note that fmt.Println, fmt is initial cap, hence is is
public from the fmt package.

Generics — new in Go 1.18

Later

// a.go

package main

func main() {

 println("aaa")

 aaa("bbc")

}

// b.go

package main

func aaa(bbb string) {

 println(bbb)

}

