
Topic 5 — Control Flow Ch 6 Scott

sequencing

selection

iteration

procedures

recursion

concurrency

exception handling

nondeterminacy (skip)

“sequencing is central to imperative languages but plays a relatively minor role in functional”

	 We will see that sequencing in Elixir can be fairly important in that the order in which
functions are defined in a module affects the matching process.
Question, what order are args to a function evaluated?

	 Go: left to right at least usually. see order_go

	 	 Book notes that optimizing compilers might want to change order. So, even if
you test — like order_go — probably best to not rely.

in infix notation, what order are operators evaluated (note no precedence problems in pre/
postfix)

	 C: On the order of 15 levels of precedence — about that many in Java and Go

	 also need to know “associativity”

	 	 10-5-5 is this 10 or 0??

	 	 17+MAX_INT-50

	 	 	 if r->l then MAX_INT-33 else

	 In a program I wrote with math ALL I had was one level of precedence and L-R
associativity

	 	 Good idea?? Smalltalk, APL do it

“side effect” if expression evaluation influences subsequent computation in any way other than
by returning a value

	 	 NOTE—by this definition printing is not a side effect

	 if there are no side effects then a lot of sequencing is not important.

	 	 Explain!!!!

	 ALL assignment statements are done for side effect. If you did not care about the value
being stored, do not store it.

	 	 purely functional languages have NO side effects.

	 	 how do you write a program that has no assignments??

	 	 	 lots of function calls — or at least make a new scope.

When using a “Value model of variables” — GO/Java primitive

	 a = b+c

	 l-value — the location of the variable. Where a thing is to be stored. (a) Think of L as
standing for both Left and Location

usually l-value is simple thing but it can get complex due to arrays a[b[5]+3] and structs/objects

	 r-value — an actual value (b,b,b+c)

	

reference model of variables

	 still have l-value and r-values

	 every variable is an l value so when an r-value is needed need to “dereference” — that
is turn it into an r-value.

1

suppose you did not know if Go / Java were value model or reference?

	 Design an experiment to determine

	 	 What gets in the way of experiment?

	 	 	 Can you tell value or reference on an immutable variable

	 	 	 	 Does Go have immutables?

	 	 	 	 	 Strings are immutable (how can you tell)?

	 	 	 	 	 Otherwise NOT (except for things declared const)	

Go almost always uses value model — exception data structures like slices

A slice is a reference. a sub slice is a reference to a location within a slice!!

	 Question: what information is actually stored about a slice and why?

	 	 4 things: 	 starting location in memory

	 	 	 	 type of information being stored

	 	 	 	 how many pieces of information

	 	 	 	 how much space you have to store things

	 	 see PoiSli_go

	 	 	 Why does slice need to know all of this???

Value model languages DO NOT have aliases (by default). They can’t. But even in value-
model langs, references and aliases can be really handy. So they have pointers! Reference-
model does not need because everything is a pointer.

	 Go: need to tell that you have a pointer when passing into funcs, but after that value
and pointer are treated the same — from programmers perspective.

	 see pointer0_go — using pointer to get an alias

	 	 pointer_go — using pointers in function calls

	 nullpointer_go — even pointers in Go have a “zero value”

Initialization and the problem of uninittialized vars

	 Note that value and reference model langs have different issues

	 Java: every value model starts as 0. Every reference starts as null

	 Go: every type has a defined “zero” state. Every var initialized to zero state.

	 	 pointers?

	 Java — definite assignment guarantees that no variable is uninitialized. Unneeded in
Go. Is it really needed in Java?

	 see Definite.java in short_go

Short circuit boolean

	 see short_go

	 Note unlike Java Go does not allow assignment with boolean

	 	 also a = (b=6)

Flow

	 break — a limited for of goto??

	 	 allowed in both Java and Go.

	 	 see break_go

	 Labeled loops and break:

	 	 break allow you to get out of loop early

	 	 labeled loop allows you to not just get out of inner loop

	 	 	 GO: break cannot get out of current function — WHY?

2

	 	 	 break_go

	 return — should it be allow from anywhere or only at end!

	 	 should I be able to return from more than one func.

	 	 	 very rare

	 mullti-level return — why not?

	 	 e.g. return3 — causes return,return,return so pop function stack 3 times with
one statement.

	 	 Crossover between exception and multilevel return. Note that can simulate a
multilevel return in Java using exceptions — Write Example

SEQUENCING

“sequencing is central to imperative programming”

	 because imperative programming makes heavy use of assignment statements

SELECTION

the if statement

the switch statement

	 switch_go and switch.go, Switch.java therein

“the principle motivation is to facilitate the generation of efficient target code”

switch in Go

	 NO default fall through

	 	 fallthrough statement

	 	 but allows listing of multiple cases

	 	 any type that allows an == comparison

	 tagless optional

	

LOOPS

	 another imperative concept

	

	 Iterators and enumeration controlled loops

	 	 rather than just using numbers allows programmer to do a loop for everything in
a collection

	 	 Have seen this in GO slic_go/slic.go

	 	 for idx,val := range slice {}

	 Java: looping over array or any collection

	 	 it is really clunky (to write) need to create another class and implement n
interface (effectively creating an object closure)

	 	 	 see readCSV_java

	 Using closures to simulate enumerated loop

	 	 on homework 3

	 Any number of syntaxes for for loops

Recursion

	 Advantage: no special syntax (but does require support for recursion)

3

	 Why NOT have recursion support?

	 	 without recursion, every function can exist in a preallocated space so stack

operations minimal — only thing you need in the stack is the resumption point

So why have recursion?

	 Some problems are naturally recursive

	 	 towers of Hanoi

	 	 Merge sort

	 	 QuickSort

	 	 These can be implemented with iteration and a stack, but recursion is neater.

	 Tail recursion:

	 	 see tailrec_go

	 	 “additional calculation never follows recursive call”

	 	 In this case you can do the recursion without adding to the stack. Just use/
overwrite the stack. Since new stack frame is one of the principle costs of recursion…

	 	 	 NOTES WITH tailrec_go. GO does NOT have TR optimization . Java
does not have it. When you run this program, it kind of looks like tail call optimization is there.
But this is a fiction. How to tell it is fictional???

	 	

Generics and Java

	 For example

	 	 Integer extends Number — True

	 	 By Covariance Integer[] extends Number[]

	 	 Hence this is legal:

	 	 	 Number[] nArray = new Number[10];

	 	 	 Integer[] iArray = nArray;

	 	 	 	 can put integers into iArray and it is guaranteed to be fine with

nArray

	 	 	 See ArrayCov_java

	 	 	 	 point when passing into methods covariant type inherit just like
their base types. But this can cause issues at run time.

	 generics are NOT covariant It would break type saftey

	 For instance consider ArrayList

	 	 ArrayList<Integer> ai = new ArrayList<>();

	 	 ArrayList<Number> an = ai; // WILL NOT COMPILE

	 	 ln.add(Double.doubleValue(2.2));

	 See also Cov1_java

	 	 (note arrays actually have the same issue)

	 Generics with wildcards

	 	 see covar_java

	 	 see Wildcard_java

	 	 ArrayList<? extends Number>

	 	 ArrayList<?>

	 	 ArrayList<*>

	 	 Wildcards can be handy

	 	 	 limit a function to taking an array list that contains anything that extends
number (you need it here because generics are NOT covariant)

	 	 But wildcards result in other issues, specifically immutability.

	 	 	 See Immut_java

	 Type Erasure

4

	 	 the cause of the “R[] arr = (R[]) new Object[100])” problem

	 	 	 generics are known only by compiler, they are “erased” after compile so
all of that info is gone at runtime.

	 	 	 see Erasure_java

	 	 EG

	 	 	 ArrayList<String> ss = new ArrayList<>();

	 	 	 eventually gets translated to

	 	 	 ArrayList ss = new ArrayList();

	 	 So at run time, anything that the compiler let pass is OK. It could cause runtime
issues.

	 	 Erasure also causes things that might see legal to NOT be legal. For instance

	 	 public class JavascriptNumber implements Comparable<String>,
Comparable<Number> { …}

	 	 does not work because compiler reduces this to

	 	 public class JavascriptNumber implements Comparable, Comparable { …}

Generics in Go (topic 8)

	

5

