
Functional Programming and Elixir

CH 11 From Scott

Ch 1-5 “Learn Functional Programming with Elixir”

https://elixir-lang.org/getting-started/introduction.html and subsections from there 1-10

Issues like binding times, names and scope still apply.

Why Functional Programming

“Imperative languages have shared mutating values”

	 1. A change in one place can effect others

	 2. Concurrency

	 	 Java (and lots of other langs) has a data types to address this issue 	 	 	

	 	 	 Atomic[Integer,Long, Float…]

	 	 	 	 simple test of AtomicLong — ~20x slower

	 	 	 	 see atomic_java/Atomic.java

	 	 	 Also locks, thread safe classes (for instance Vector is not, ArrayList is)

Scott “One can write in a function style in many imperative languages, and many functional
languages include imperative features ….”

Common features of functional languages

	 Per Scott: “heavy use of polymorphism “

Remember “polymorphism”

Ad hoc polymorphism, in which the same function name (or operator symbol) can

denote different implementations depending upon how it is used in an
expression. That is, the implementation invoked depends upon the types of
function's arguments and return value. 
There are two subkinds of ad hoc polymorphism.

Overloading refers to ad hoc polymorphism in which the language's compiler or
interpreter determines the appropriate implementation to invoke using
information from the context. In statically typed languages, overloaded
names and symbols can usually be bound to the intended implementation at
compile time based on the declared types of the entities. They exhibit early
binding. 
Java overloads a few operator symbols, such as using the + symbol for both
addition of numbers and concatenation of strings. Java also overloads calls of
functions defined with the same name but different signatures (patterns of
parameter types and return value). Java does not support user-defined
operator overloading; C++ does.

Subtyping (also known as subtype polymorphism, inclusion polymorphism, or
polymorphism by inheritance) refers to ad hoc polymorphism in which the
appropriate implementation is determined by searching a hierarchy of types.
The function may be defined in a supertype and redefined (overridden) in
subtypes. Beginning with the actual types of the data involved, the program
searches up the type hierarchy to find the appropriate implementation to
invoke. This usually occurs at runtime, so this exhibits late binding. 
The object-oriented programming community often refers to inheritance-
based subtype polymorphism as simply polymorphism.

Page of 1 9

https://elixir-lang.org/getting-started/introduction.html

Parametric polymorphism, in which the same implementation can be used for many
different types. In most cases, the function (or class) implementation is
stated in terms of one or more type parameters. In statically typed
languages, this binding can usually be done at compile time (i.e., exhibiting
early binding). 
The object oriented programming community often calls this type of
polymorphism generics or generic programming. The functional programming
community often calls this simply polymorphism.

FROM https://john.cs.olemiss.edu/~hcc/csci450/2016fall/notes/Fundamentals/
Polymorphism.html

	 	 IT IS PARAMETRIC POLYMORPHISM THAT FP USES.

Claim:

Polymorphism offers the following advantages −

	 It helps the programmer to reuse the codes, i.e., classes once written, tested and

implemented can be reused as required. Saves a lot of time.

	 Single variable can be used to store multiple data types.

	 Easy to debug the codes.

https://www.tutorialspoint.com/functional_programming/

functional_programming_polymorphism.htm

NOTE THIS IS CONTRADICTORY TO CLAIMS MADE IN STRONGLY TYPED
LANGUAGES

Back to Scott and features of functional programming languages

	 lists (rather than arrays)

	 RECURSION

	 Lots of temporary variables so garbage collection

	 first class functions

	 “structured function returns”

	 immutable values

	 functions are ONLY dependent on their arguments

	 functions ONLY effect is its return value

function programming and top down thinking

	 “top down programming” is what you have been taught.

	 start with statement of problem, design classes, design function interfaces, write …

	 Linked to a method of software development “waterfall”

	 functional programming is more naturally “bottom up”.

	 	 start by writing a program to do one little piece of task. Make sure it works.

	 	 write another function, that may use the result of first function, to do another
piece

	 	 The final program ends up being a fairly simple assembly of the pieces.

	 	 You know it will work, because all of the pieces are easily and independently
testable because each function depends only on its parameters

	 	 In functional programming you ALWAYS have something that works.

	 	 	 May not do everything, but it does things correctly

Page of 2 9

https://john.cs.olemiss.edu/~hcc/csci450/2016fall/notes/Fundamentals/Polymorphism.html
https://john.cs.olemiss.edu/~hcc/csci450/2016fall/notes/Fundamentals/Polymorphism.html
https://www.tutorialspoint.com/functional_programming/functional_programming_polymorphism.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_polymorphism.htm

Why Elixir? — almost always shows in the top 3 FPLs

Elixir

	 dynamically typed (late binding)

	 static scope

	 can be either interactive or batch (much like python)

	 	 interactive: 	 start: iex

	 	 	 	 end: ctrl-C ctrl-C (yeas twice)

	 	 	 	 	 I do not do this much, but the book does.

	 	 batch: 		 UNIX> elixir abc.ex

	 	 	 	 	 will find / use other .ex files in current directory

	 	 Compiled: 	 UNIX> elixirc abc.ex

	 	 	 	 	 	 results in *.beam files , one for every “module” in
compiled file

	 	 	 	 	 	 beam files are found and auto used (equivalent to
java .class files) when you run either elixir or iex

	 	 	 	 	 	 I rarely do this

Elixir types:

	 integer, float, boolean, “atom”, string, anonymous function, list, tuple

	 	 Atom is a constant whose value is its own name.

	 	 	 Atoms start with “:”

	 	 Strings— UTF-8

	 	 	 so byte_size(“string”) may not equal String.length(“String”)

	 	 Anon Func:

	 	 	 Go has these also

	 	 	 Write a function and bind it to a variable — lots of uses, but difficult/
impossible to do recursion

iex(12)> a = fn -> 7 end # anonymous function — no args

#Function<43.3316493/0 in :erl_eval.expr/6>

iex(13)> a.() # call to anonymous function Note the “.” it is required

7

iex(14)> b = fn (x) -> 7*x end # anonymous function — one arg

#Function<42.3316493/1 in :erl_eval.expr/6>

iex(15)> b.(7)

49

iex(16)> c = fn (x,y) -> z=x+2; z*y end # anon fun — 2 args

#Function<41.3316493/2 in :erl_eval.expr/6>

iex(17)> c.(3,4)

20

iex(18)> d = fn (x,y,z) -> zz = z+3 # anon fun — 3 args — on multiple lines!

...(18)> x*y*zz

...(18)> end

#Function<40.3316493/3 in :erl_eval.expr/6>

iex(19)> d(2,3,4)

** (CompileError) iex:19: undefined function d/3 (there is no such import) # no “.”

iex(19)> d.(2,3,4)

42

	 See also anon_ex/anon.ex

Page of 3 9

Most of this example but in a file

	 	 Lists

	 	 	 stored as linked list.

	 	 	 	 so access is linear in length of list.

	 	 	 [“a”, 1,2,3]

	 	 	 [104, 101, 108, 108, 111]

	 	 	 	 ‘hello’

	 	 	 	 A character list — which is NOT a string

	 	 Map

iex(1)> aa = %{a: 3, b: 4}

%{a: 3, b: 4}

iex(2)> bb = %{"a"=>"c", 12=>42}

%{12 => 42, "a" => "c"}

iex(3)> bb[12]

42

iex(4)> aa[:a]

3

	 	 Tuples

	 	 	 {1, “hello”}

	 	 	 access to members if fast, change is slow.

	 	 	 Most common usage is to get multiple returns from functions

	 	 	 tuples in Exlir are real things unlike “tuple assignment” in Go

To get the type of a variable

iex> i(bb)

ALL TYPES ARE IMMUTABLE
	 for instance

	 	 ++ is list concatenation operator

	 	 iex> aa=[1,2,3]

	 	 [1,2,3]

	 	 iex> aa++[4]

	 	 [1,2,3,4]

	 	 iex> aa

	 	 [1,2,3]

	 	 iex>bb=aa++[4] # when append, the thing appended should be a list

	 	 [1,2,3,4]

	 	 iex>aa==bb

	 	 false

	 different from Java / Go!!!

	 In Go vars are always mutable. However strings are immutable.

	 	 Question how are strings actually stored in Go?

	 	 	 For instance [3]string. The point is that this should take up a fixed
amount of space. But strings have variable length!!!

	 	 	 Answer: indirection. Actually store a struct containing pointer and length

	 	 	 	 similar to indirection for Slices just harder to see because of
pass-by-value and immutability

	 	 see immut_go/imm.go

Page of 4 9

	 Strings also immutable in Java. Most Number are immutable. Anything declared “final”
is immutable. In edge cases with generics and covariance you can have immutable items.
We might get there.

	 	 Even integers “variables” are immutable in Elixir!!

	 	 	 How to prove this statement!!

	 	 	 	 pass a var into a function??

	 	 	 	 	 could just be pass by value rather than pass by reference/
sharing

	 	 	 	 Really need closures to prove!!

See immut_ex/imm.ex and imm.go

Tuple

	 iex> tuple = {:ok, "hello"}

{:ok, "hello"}
iex> elem(tuple, 1)
"hello"

	 Most common use of tuples is multiple return from a function

OPERATIONS & OPERATORS
	 +,-,*,/, div, rem

	 	 elixir does do type coercion

	 ++, - - List operators, append two lists, Remove items in right list from left list

aa=[1,2,3,4,3,2,1]

[1, 2, 3, 4, 3, 2, 1]

iex(2)> aa--[2]

[1, 3, 4, 3, 2, 1]

iex(3)> aa--[2,1]

[3, 4, 3, 2, 1]

iex(4)> aa--[2,2,1]

[3, 4, 3, 1]

	 <> string concatenation

	 and, or, not boolean operators, both things must be boolean

	 &&, ||, ! Boolean operators anything other than false and nil are true

	 ==, ===, !=, !==, >, <, >=, <=

iex(5)> 1==1.0

true

iex(6)> 1===1.0

false

	 same value and same type

	 |> “Pipeline”

Idea, that the output of one function and make it the first argument to the next function.

NOT a necessary part of the language but it can make the code a LOT easier to read. Without
it, you sort of have to start reading lines on the right and work your way left.

	 Much the same a UNIX pipes

	 	 see upcase_ex/upcase.ex

Modules and named functions
	 named functions can only exist within a module

defmodule Agt do

Page of 5 9

def ggt (val) do

 42+val

end

end

IO.puts Agt.ggt(1)

	 	

Closures
as with Go, closures in elixir hold the items in scope at the time the func was defined.

	 Unlike Go, because vars are immutable, change to variable after function is defined has
no effect

	 see closu_ex/clos.ex

	 see closure_go/closure.go

PATTERN MATCHING

used in most “modern” FP languages, certainly in elixir

Matching is everywhere is Elixir

= is NOT assignment, it is match

iex(1)> a=2 # with var on left, the var can take any value; therefore it matches 2 and
assignment happens

2

iex(2)> a=3

3

iex(3)> 2=a #with var on right, constant on left, they must match or it a MatchError

** (MatchError) no match of right hand side value: 3

iex(3)> 3=a #Since a had a value of 3, these match

3

Deeper: that in Go 2=a will not compile as 2 cannot be converted into an l-value

In Elixir, the problem is that = is the match operator, not the assignment operator

So “2=a” fails because the value stored in a cannot be matched to 3

OTOH 3=a is fine

pattern matching applies in lots of places

	 Strings

iex(18)> "a"<>b="an inconvient truth"

"an inconvient truth"

iex(19)> b

"n inconvient truth"

	 Note here that the variable b gets the assignment of the part of the string (on right)
contained in a that does not match to “a”

	 Tuples

iex(7)> a={1,2,:OK}

{1, 2, :OK}

iex(8)> {b,c,d}=a

{1, 2, :OK}

iex(9)> b

1

iex(10)> {e,f,:ok} =a

Page of 6 9

** (MatchError) no match of right hand side value: {1, 2, :OK}

Tons of other ways to get match errors

iex(10)> {e,f,:OK} =a

{1, 2, :OK}

iex(11)> f

2

iex(12)> {_,_,:OK}=a

{1, 2, :OK}

	 8: binds the values of b,c,d to the parts of the tuple

	 9: shows that b has a value of 1

	 10: given that the third element in the tuple is the atom :ok, bind e, f to the first 2

	 	 this fails because atoms are case sensitive

	 11: As with 10, but success

	 12: When you do not case about binding vars just an _ or _ preceding a name will
match anything

	 LISTS

	 	 Can match everything just like tuples, but more commonly head and rest

a=[1,2,3,4,5,6,7,8,9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

iex(14)> [b|c] = a

[1, 2, 3, 4, 5, 6, 7, 8, 9]

iex(15)> b

1

iex(16)> c

[2, 3, 4, 5, 6, 7, 8, 9]

	 	 Note that the | operator can also be used to add to lists

iex(17)> d=[10|a]

[10, 1, 2, 3, 4, 5, 6, 7, 8, 9]

iex(18)> d

[10, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Again, important to keep in mind that = may look like assignment and often behave that way,
but it is NOT.

	 MATCHING in functions (chapter 4)

	 	 First, order matters in elixir. See funmatch_ex/funmatch.ex

	 	 function arguments can be pattern matching expressions!!!!!!

	 	 see recur_go/recur.go. Very simple linked list and recursive printer in Go

	 	 Now recur_ex/recur.ex
	 	 	 prnt_lst is exactly equivalent to recur.go

	 	 	 	 he(x) gives first element of list, tl(x) rest of list

	 	 	 match_prnt_lst same thing using matching!!!

	 	 matching and guard clauses

	 	 	 recur_go/recur.go toLimByMFromS

	 	 	 	 problem matching does not do well here because the stopping
conditions could be met in an unbounded number of ways

	 	 	 so “guard clauses”

	 	 	 	 guards must be very simple (e.g., numeric comparisons) and
without side effects

Page of 7 9

TAIL Recursion

	 	 see tailrec/tailrec.ex

	 	 elixir does have tail call optimization

	 	 	 problem compute the sum of the number 1..n (brute force) using
recursion

	 	 	 	 A non-tr implementation

	 	 	 	 	 100,000,000 takes about 11.7 sec

	 	 	 	 	 	 Max ~145,000,000

	 	 	 	 TR implementation

	 	 	 	 	 100,000,000 takes 0.63 sec (18x faster)

	 	 	 	 	 	 No detectable max
 STRUCTS
	 much the same reason and logic as structs in go.

	 much the same syntax as maps

implementing protocols in particular String.Chars — defimpl

	 see struct_ex/struct.ex

	 	 Note that this also implements an interface and to get structs into strings you
need to do this

Higher Order Functions (ch 5 of elixir book)
	 Idea have a function that takes a function as one of its arguments. Therefore can do
something fairly general.

	 Often can use pre-packaged higher-order functions instead of writing a recursion

	 Done some of this before … kind of

	 consider adding the elements in a list of numbers

	 	 see higher_ex/higher.ex rsum_tc

	 	 now consider passing in a function to do that addition. A little harder for the
simple addition task, see higher_ex/higher.ex rsum_tc_f
	 	 	 BUT consider sum of squares, sum of cubes, …

	 	 	 Note that the passed in function needs to take two parameters!!

	 What if I just want to transform items in a list

	 	 see t_map_tc_f
	 	 	 Note that for both of these, the efficient tail call version reverses the
order

	 Or filtering a list for particular items

	 	 see 	

	 	 	 filter_tc_f

	 Many of the higher order functions are defined in Enum module.

	 Enum can be applied to anything that implements the Enumerable protocol

	 Enum.reduce

	 	 takes a list, a starting point and a function and returns a single thing. the sum of
the elements, a string of the elements

aa=[1,2,3,4,5,6,7,8,9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

iex(3)> Enum.reduce(aa, 0, fn (itm, acc) -> itm+acc end)

45

iex(5)> Enum.reduce(~w[a s d f g h], "", fn (itm, acc) -> itm<>acc end)

"hgfdsa"

	 Enum.map

	 	 list and a function, returns a list of each of the original list with the function
applied to it

Page of 8 9

iex(6)> Enum.map(aa, fn (itm) -> itm*itm end)

[1, 4, 9, 16, 25, 36, 49, 64, 81]

iex(7)> Enum.map(aa, &(&1*&1))

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Practical matters — file reading and command line parameters
see commread_ex/commread.ex

	 that this program also shows use of case command in a couple of error handling
situations

Page of 9 9

