
Topic 8: Types

Ch 7 Scott

2 basic questions : what / why

What??

	 bits are untyped!!!

	 most basic: a type defines how many, and how, to interpret bits. (OK, so how does elixir
have unlimited size integers?) Similarly, in any language, if a string is a “basic” type, how
because you do not know its size

	 also—the set of operations that are allowed it.

	 	 primitive types “built in” — usually at hardware level

	 	 	 different from Java int, …

	 	 composite types

Why?:

1. Types supply context — Useful for compiler as it specified what to do

2. Limit what is allowed to be done

3. Make the program more readable to user — effectively a form of documentation —

especially useful when there are a lot of types (OO langs). So why type inference (as in
Go)?

4. Compile time optimization

Most of these are arguments in favor of static types, What about languages (elixir, python) with
dynamic types point 2 is still valid.

Type system:

	 1. mechanism to define types

	 2. Definition of

	 	 type equivalence

	 	 	 structural vs name

	 	 type compatibility

	 	 	 what is allowed with what

	 	 	 for + suppose one is Int, what is the other allowed to be

	 	 	 	 in a weakly typed anything

	 	 	 	 Go, Java

	 	 type inference (may not be available in some langs)

	 Terms

	 	 static vs dynamic type

	 	 	 Elixir: is it really dynamically typed since immutability means that the
storage location changes. Simulate immutability in Go? Test Question??

	 	 strongly typed

	 	 	 See below

“primitive types” vs composite types

	 composites in next chapter

	 	 struct, array, set, pointers, list, file

	 Primitive — int (at what precision?) should a lang care about precision?

	 	 character? ASCII, 16-bit ascii? rune? UTF-8

	 enums — primitive or composite. Why???? How??

	 	 consecutive integers? Powers of two?

Do functions have types?

	 Why?

	 If they are first or second class, they do / must

	 What is the type of function??

	 	 Go:

	 	 	 type af func(a int) int

	 	 	 func(incr int) int { return aa + inc }

	 	 Elixir:

	 	 	 late binding / dynamic type. The only thing you know is the number of
args. And that is the type!!

iex(2)> h String.split

 def split(binary)

 @spec split(t()) :: [t()]

delegate_to: String.Break.split/1

Java— function type is its name and all of the types of its arguments

Strongly typed — language prohibits even trying to do something that is not allowed for a type.
Thrown out at compile

Weak—usually implies doing more work at run time — strong==fast

	 for instance, to make the “+” work, javascript must do what?

	 	 can interpreted language be strongly typed?

	 realistically this is a spectrum. Language may have holes …

	 weakly typed —ex language allows application of operators when it does not make
necessarily make sense. For instance, javascript is weakly typed (and dynamically typed)

	 	 f = some function

	 	 q = 5 + f

	 	 	 Go? Elixir? Javascript?

Statically typed — strong AND type checking is a compile time.

Polymorphism

Ad hoc polymorphism
 2 modes:
 A. Overloading: e.g. + works on int and float
 B. Subtyping — common in OO languages — allow uses of subtype where

base type is specified.
Parametric
 same function can be used for different arg types
	 Generics == “Explicit parametric polymorphism”

	 	 implemented at compile time!!!

	 	 In strongly typed language generics are only way to get polymorphism (except
subtypes)

Lots of types

Basic type: integer, float …

	 Intergers

	 	 Java: byte, short, int, long. Also, Byte, Short, Integer, Long, BigInteger!!!

	 	 Elixir: integer	 	

	 	 Go: [u[int[8,16,32,64]

	 	 Why so many int types???

	 Floating point: similar

	 char — what is a char?

	 	 one byte — ASCII

	 	 	 char in c

	 	 2 bytes — UNICODE16 — JAVA

	 	 	 char in Java

	 Go does not actually have a char type it has a “rune”

	 	 WHAT IS A RUNE IN GO?

	 	 Up to 4 bytes — UTF8 —- variable

	 	 	 0xxxxxxx — 1 byte — plain old ASCII

	 	 	 110xxxxx 10xxxxxx —-

	 	 	 1110xxxx 10xxxxxx 10xxxxxx

	 	 	 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

	 	 	 “rune” in Go

	 	

	 is String a basic type?

	 	 in Java? C? Go?

	 	 	 Java — NO..it is a class

	 	 	 	 (Are classes in java.lang really “basic” to Java??

	 	 	 	 You cannot do ANYTHING without java.lang.Object

	 	 	 	 To know would have to look at implementation of String class

	 	 	 C — definitely NOT

	 	 	 Elixir: YES

	 	 	 Go — from book “a string contains an array of bytes that, once created,
is immutable”

	 	 	 	 This indicates that string is a composite type, maybe

	 	 	 	 Going further Go explicitly mirrors string functions with byte array
functions

	 	 	 	 OTOH — “The underling type of every constant is a basic type”
boolean, string or number”

	

	 Enumerated types

	 	 What: a type that has a specific, finite (usually small), and bounded set of
possible values.

	 	 Why?

	 	 Go: enum_go/enum.go
	 	 	 They do not really exist like in other languages so you get little benefit

	 	 Java: enum_java/GTEnum.java

	 Type checking

	 	 Java: obvious and handled by compiler

	 	 Go: often do not require explicit types (type inference)

	 	 	 type inference

	 	 	 	 why have type inference?

	 	 	 	 	 you loose the readability of the implicit documentation

	 	 	 	 	 what do you gain?

	

When are two types the same???

	 	 structural vs name equivalence

	 	 	 structural

	 	 	 	 same order, or just same number and kind?

	 	 	 	 what work needs to be done to get this?

	 	 	 	 what does Go/Elixir do?

	 	 	 	 	 why not use structural equivalence?

	 	 	 name

	 	 	 	 what about type aliases?

	 	 	

	 	 what are Go, Java

	 	 Go: equiv_go/equiv.go
	 	 	 strict name equivalence

	 	 Java: no typealias (quite) equiv_java/Equiv.java
	 	 	 you can define a class that extends another class without addition

	 	 	 Why would you??

	 	 	 	 limitation — class cannot be final (e.g. String is final, why?) what
is final with respect to classes in Java?

	 	 	 	 Also this does not really get you equivalence

	 	 Elixir — structs are a form of type — sort of.

Casting — converting from one type to another

	 in strongly typed languages “weird” casts are not allowed

GO: casts_go/casts.go
func t5() {

 str := "abc"

 fmt.Println(str)

 var num int64

 num=40

 fmt.Println(num)

 num = int64(str) // Compiler flags as not allowed

}

	 Problem is that casting requires changing bits and you have to know how.

	 	 what is the problem with changing bits??? time!

	 Some langs allow “non-converting” casts. That is, do not change bits just interpret
bits differently. What is problem? (C does this)

	 	 Go: pun_go/pun.go

Question — can you do this in Java?? Why/why not??

	

	 type coercion

	 	 implicit casting????

	 	 allow 3+2.4 without explicit casing

	 	 	 pros/cons

	 	 Go — no coercion

	 	 Java — happy to coerce among numeric types

	 	 Javascript— (weak) happy to coerce pretty much anything

	 	 	 	 — “JAVASCRIPT WANTS THINGS TO BE TRUE”

	 	 Elixir — coerce between integer and float but not between integer and string

	 	 	 == vs === in elixir and javascript

iex(1)> a="12"

"12"

iex(2)> b=12

12

iex(3)> a==b

false

iex(4)> a===b

false

iex(5)> c=12.0

12.0

iex(6)> b==c

true

iex(7)> b===c

false

	 	

Type inference (in statically typed language):

	 go does it:

	 	 infer_go

type inference in Java??

	 	 does <> in some generics count as type inference??

	 	

Advantages / disadvantages of type inference (in a strongly typed language)???

Generics

	 they are much more complex that you thought (and you probably thought they were
pretty complex)

	 Java “Generic Gotchas”

	 	 See the web article

Covariance & Generics:

	 For example

	 	 Integer extends Number — True

	 	 By Covariance Integer[] extends Number[]

	 	 Hence this is legal:

	 	 	 Number[] nArray = new Number[10];

	 	 	 Integer[] iArray = nArray;

	 	 	 	 can put integers into iArray and it is guaranteed to be fine with

nArray

	 	 	 See ArrayCov_java
	 	 	 	 point when passing into methods covariant type inherit just like
their base types. But this can cause issues at run time.

	 generics are NOT covariant It would break type saftey

	 For instance consider ArrayList

	 	 ArrayList<Integer> ai = new ArrayList<>();

	 	 ArrayList<Number> an = ai; // WILL NOT COMPILE

	 	 ln.add(Double.doubleValue(2.2));

	 See also Cov1_java

	 	 (note arrays actually have the same issue)

	 Generics with wildcards

	 	 see covar_java

	 	 see Wildcard_java

	 	 ArrayList<? extends Number>

	 	 ArrayList<?>

	 	 ArrayList<*>

	 	 Wildcards can be handy

	 	 	 limit a function to taking an array list that contains anything that extends
number (you need it here because generics are NOT covariant)

	 	 But wildcards result in other issues, specifically immutability.

	 	 	 See Immut_java

	 Type erasure in Java

	 	 generics are known only by compiler, they are “erased” after compile so all of
that info is gone at runtime.

	 	 	 see Erasure_java
	 	 EG

	 	 	 ArrayList<String> ss = new ArrayList<>();

	 	 	 eventually gets translated to

	 	 	 ArrayList ss = new ArrayList();

	 	 So at run time, anything that the compiler let pass is OK. It could cause runtime
issues.

	 	 Erasure also causes things that might see legal to NOT be legal. For instance

	 	 public class JavascriptNumber implements Comparable<String>,
Comparable<Number> { …}

	 	 does not work because compiler reduces this to

	 	 public class JavascriptNumber implements Comparable, Comparable { …}

	 	

Generics in Go

	 	 See GoGen1 for basics

	 	 NO erasure in Go … see GoGen2

	 	 Any — kind of like Object in Java. More like ?

	 	 LinkedList is a good example, but not until next chapter!

Object equality (sec 7.4)

	 	 deep vs shallow equality

	 	 deep vs shallow assignment

	 	 in ref-model and value model languages

	 	 why in Go if == defined over array but not slice

	 	 “deep assignment”

	 	 == vs === in Elixir

When are two objects the same?

	 Deep vs shallow checks?

	 	 Java == vs equals

	 	 	 Deep vs shallow assignment

	 	 Only applied to reference model languages

	 	 	 see copy_go
	 	 Value languages effectively always deep copy

	 	 Shallow

	 	 	 copy and assign pointer (SCopy.java)

	 	 	 make a new copy of object and assign.

	 	

