
Composite types

Ch 8 Scott

The line between “built-in and composite types is thin

Is a string built in?

	 Not (quite) in C

What defines a composite type?

Record / structs

	 Go - struct

	 Elixir defstruct within defmodule	

	 Why have records?

	 Implications of reference model vs value model on records

	 Is Go anonymous include equivalent to inheritance in Java??

	 What is stored in a go struct?? Overhead??

	 	 see size_go/structsize.go

	 copy and Equality

	 	 a==b

	 	 what is difference in Go and Elixir?

	 	 	 again value-model vs reference model language

	 	 	 see equal_go/equal.go
	 	 	 	 in particular, for go show the addresses of objects in equal_go

	 	 Question: is elixir value model or reference model?
	 	 	 A: given immutability it really does not matter — Why??

	 	 Equality in Elixir:

	 	 	 seems to be a deep comparison. see equal_ex/equal.ex But it is hard to
be certain

	 	 Copy Elixir:

	 	 	 probably just a reference — again immutability makes it hard to tell and
renders the discussion somewhat irrelevant

	 	 	 There is no way to see pointers in Elixir

iex(1)> a=[1,2,3]

[1, 2, 3]

iex(2)> b=[0|a]

[0, 1, 2, 3]

iex(3)> c=a++[4]

[1, 2, 3, 4]

iex(4)> a

[1, 2, 3]

iex(5)> b

[0, 1, 2, 3]

iex(6)> c

[1, 2, 3, 4]

Question is the [1,2,3] of a used in b or c??

	 Almost certainly but immutability means it does not matter		

	

Arrays

	 usually homogenous type

	 	 	 Why homogenous????

	 	 	 	 value-model language it is kind of required

	 	 	 	 	 Go array vs Slice what is stored where

	 	 Exactly What is stored in an array in Java

	 	 Java since everything inherits for Object can make non-homo array

	 	 	 easy in reference model language

	 	 	 	 easy with subtype polymorphism

	 	 	 Note that similar game is harder in value model Go

	 usually contiguous in memory

	

	 Go — arrays MUST be sized at compile time!! (Why?)

	 	 arrays contain the objects, literally. So each spot in otherwise “empty” array
actually contains the sting with zero value(s).

	 Elixir — no arrays — why not

	 	 are tuples in elixir a substitute for arrays (they are indexed)

iex(1)> aa = {"q", "w", "e", "r", "t"}

{"q", "w", "e", "r", "t"}

iex(2)> elem(aa, 2)

"e"	

	 Go — slices contain REFERENCES!!! Why? So what?

	 	 consider difference between

	 	 a := b for array and slice in Go

	 	 	 for array, everything is new! Copying can be expensive

	 	 	 for slice, the address of the slice is new (value model)

	 	 	 	 but all the content is the SAME (copy the references)

	 	 	 WHY?

	 	 	 Heap allocation vs stack allocation!!!

	

Row-Major & Column major ordering

	 	 assumes array contained in contiguous block of memory

	 	 Looking at pointer addresses in Go you can see this.

	 	 Suppose A is 7x10 array

	 	 R-M

	 	 	 A[2,4] followed by A[2,5] … a[2,6],a[3,0]

	 	 C-M

	 	 	 a[2,4], a[3,4] … a[9,4],a[0,5]

	 	 Why do I care?

	 	 	 Max performance says always access memory locations near each other

	 	 	 so nested for loop for R-M

	 	 	 	 for i 0..6

	 	 	 	 	 for j 0..9

	 	 	 	 	 	 a[i][j]

	 	 	 For C-M

	 	 	 	 for j 0..9

	 	 	 	 	 for i 0..6

	 	 	 	 	 	 a[i][j]

	 	 	 Easy to build multi-d array in RM so almost all languages use Column-
major
	 	 see size_go/sizeof.go

	

Composite equality checks

Go == on structs compares the stuff inside — a deep check. (again, kind of natural in value
model)

	 	 Go defines == over array and does a deep check!!!

	 	 	 no == over slices!!! Why? (slices could contain themselves, Why is this a
problem?)

	 	

Associative arrays (maps), sparse arrays, …

	 are these really arrays? Or are they something else that just uses the same syntax?

Strings:

	 are they a primitive type in the language

	 	 C — definitely not

	 	 Java, Go, Elixir — might as well be.

	 	 	 J,E,G — String is a fixed entity. A length change (append) makes new
string

	 	 	 	 Java StringBuffer, StringBuilder

	 	 	 Go: “A string is an immutable sequence of bytes”

	 Why are strings immutable????

	 	 String Pool

	 	 	 a place to store string literals

	 	 	 String pool — I imagine as a hashtable<String, String>

	 	 	 In big apps string pool can save lots of space

	 	 	 	 see pool_java/Pool.java

	 	 Security

	 	 	 anti hacking. Mutable strings could let hackers attack. For instance,
person passes a string — we validate — in background they change ….

	 	 Thread Safety

	 	 	 immutable strings are thread safe

	 Note that all of these arguments in favor of immutable strings can be generalized to
immutable everything!

	 	

Recursive types

	 E.g. Linked lists

	 	 How to Handle in Value-model langs like Go.

	 Answer Pointers!!!

	 	 see pointer_go — already discussed so this code is review

	 	 see tree_go — lots of points to make

	 	 	

new operator in Go / Java allocates from heap.

	 stack allocation auto reclaimed when frame complete (closures aside), but heap is
forever!

Garbage collection

	 Reference Counting

	 	 when the number of references goes to zero, reclaim

	 	 	 problem — circular structures

	 	 	 problem, how to count

	 	 	 fragmentation of memory

	 Mark-and-sweep

	 	 1. mark everything as useless

	 	 2. start with all non-heap pointers and recursively follow. Mark everything
touches as good

	 	 3.Go through heap and destroy everything not marked as good

	 Stop and Copy

	 	 split memory in half

	 	 Rather than mark and sweep, in step 2, copy from current to new. Then delete
anything not copied. Next time, switch current and new

Lists, etc

	 difference between list and array?

	 pointer following?

	 typically not indexed (why not??)

	 Go: no list type?

	 	 as a package, but NOT a language primitive

	 Homogeneous vs heterogenous

	 Opinion: lists are associated with functional programming because they are one with
LISP.

	 	

	 Counter argument. A: Lists can be built recursively by appending to the front. In so
doing you can add items to list without changing the list as it was previously seen. Lists built in
such a way are therefore perfect fit for functional programming.

	 	 	 B: Linked lists are amenable to immutability — indeed immutability
makes sharing of linked list parts a practical thing

	 For beginning of an implementation

	 	 Elixir: LL_ex/LL.ex

	 	 Go: tree_go (a tree rather than a linked list

	 Subsections of arrays/lists

	 	 go slice[start:end] returns that part of slice between start and end

	 	 Java: neither arrays nor ArrayList have subsections built in.

	 	 Elixir: Enum.slice gives subsection of linked list.

	 	

	

