
CS245 Midterm 2
Name:

Start Time:

Finish Time: 

I have abided by the Honor Code. I have not discussed this test with anyone.

(Sign below)

Accommodations: If you have given me an accommodation letter, please remind me here

If	you	take	this	test	on	separate	sheets	of	paper,	make	the	above	your	first	
page.

Typography:	In	the	test	all	code	is	in	blue.	All	program	output	appears	in	
brown.	Question	text	is	in	black.

There	are	10	questions	in	this	test	in	two	parts.	
The	first	part	is	short	answer;	the	second	is	
programming.	Answer	6	of	questions	1-7	(part	1)	
and	1	of	questions	8-10	(part	2).	For	a	total	of	7	
answers.	There	is	NO	extra	credit	for	extra	
answers.

All	questions	have	equal	value. 

 of 1 15

(Part	1	—	answer	6	of	1-7)

1.	The	type	of	a	function	in	Go	is	considerably	longer	and	more	detailed	than	
in	the	type	of	a	function	in	Elixir.	Describe	function	typing	in	each	
language	and	explain	why	Go	and	Elixir	are	so	different	in	this	respect.	
Examples	will	help.

 of 2 15

(Part	1	—	answer	6	of	1-7)

2.	Scott	lists	the	following	as	characteristics	of	most	functional	languages:

	 lists

	 recursion

	 first	class	functions

	 garbage	collection

Why	are	each	associated	with	functional	programming	languages.

 of 3 15

(Part	1	—	answer	6	of	1-7)

3.	The	output	of	these	two	nearly	identical	programs	(one	in	Go,	one	in	
Elixir)	is	different.	Explain.

Go Elixir

package main

import "fmt"

func main() {

 r:=makeFunn(5)

 fmt.Printf("%v\n", r())

 fmt.Printf("%v\n", r())

 fmt.Printf("%v\n", r())

}

func makeFunn(inp int) func() int
{

 f:=func() int {

 inp=inp+inp

 return inp

 }

 return f

}

defmodule Main do

def main() do

 r = makeFunn(5)

 IO.puts(r.())

 IO.puts(r.())

 IO.puts(r.())

 end

 def makeFunn(inp) do

 fn () ->

 inp=inp+inp

 inp

 end

 end

end

Main.main

Output:

10

20

40

Output:

10

10

10

 of 4 15

(Part	1	—	answer	6	of	1-7)

4. Consider	the	following	(copied	from	the	elixir	interpreter)

iex(1)> a=["This",17,"That",43.5, 1712]

["This", 17, "That", 43.5, 1712]

iex(2)> aa=a

["This", 17, "That", 43.5, 1712]

iex(3)> b=[{1,2} | a]

[{1, 2}, "This", 17, "That", 43.5, 1712]

iex(4)> c=aa++[{1,2}]

["This", 17, "That", 43.5, 1712, {1, 2}]

Why	is	the	appending	method	from	line	3	preferred	over	the	method	from	line	
4?	(The	answer	has	nothing	to	do	with	the	order	of	the	items.)	Be	specific.	

What	values	are	stored	in	a,aa,b,c	after	line	4?	Explain.

 of 5 15

(Part	1	—	answer	6	of	1-7)

5.	Elixir	appears	to	be	(and	claims	to	be)	dynamically	typed.	On	the	other	
hand,	variables	in	Elixir	are	certainly	immutable.	Question:	does	
immutability	make	Elixir,	at	least	effectively,	statically	typed?	Explain.	(A	
good	explanation	will	receive	full	credit,	regardless	of	a	yes	or	no	answer.)

 of 6 15

(Part	1	—	answer	6	of	1-7)

6.	Consider	the	following	two	Java	classes.	One	does	not	compile	(ALCov),	the	
other	throws	a	runtime	exception.	Both	problems	are	related	to	co-variance.	
Describe,	exactly	what	the	problems	with	each	class	are	and	why	they	exist	in	
Java.

import java.util.ArrayList;

public class ALCov {

 private void changeNAL(ArrayList<? extends Number> al) {

 for (int i = 0; i < al.size(); i++)

 al.set(i,Double.valueOf(i+13.2));

 }

 public void testArrayList() {

 ArrayList<Number> nArr = new ArrayList<>();

 ArrayList<Integer>iArr = new ArrayList<>();

 for (int i = 0; i < 5; i++) {

 nArr.add(i + 10.5);

 iArr.add(i, i);

 }

 changeNAL(nArr);

 changeNAL(iArr);

 for (int i = 0; i < nArr.size(); i++) {

 System.out.println("N " + nArr.get(i));

 System.out.println("I " + iArr.get(i));

 }

 }

 public static void main(String[] args) {

 new ALCov().testArrayList();

 }

}

 of 7 15

public class ArraCov {

 private void changeN(Number[] arr) {

 for (int i = 0; i < arr.length; i++)

 arr[i] = i+13.2;

 }

 public void testArray() {

 Number[] nArr = new Number[5];

 Integer[] iArr = new Integer[5];

 for (int i = 0; i < nArr.length; i++) {

 nArr[i] = i + 10.5;

 iArr[i] = i;

 }

 changeN(nArr);

 changeN(iArr);

 for (int i = 0; i < nArr.length; i++) {

 System.out.println("N " + nArr[i]);

 System.out.println("I " + iArr[i]);

 }

 }

 public static void main(String[] args) {

 new ArraCov().testArray();

 }

}

 of 8 15

(Part	1	—	answer	6	of	1-7)

7.	Describe	the	differences	between	deep	vs	shallow	equality	checking	and	
structural	vs	name	type	equivalence.	A	complete	answer	will	need	to	define	
all	four	terms	and	will	probably	be	helped	along	by	some	well	chosen	
examples.

Shallow vs. Deep equality checking: 
Shallow equality checking sees that the pointers of the two values are the same. For

example, in Java, == does a shallow check. For example, in the following code: Int[] a = {1, 2}

int [] b = {1, 2}

A == b // this will be false, because the pointers of the two objects are different places in memory.

Deep equality checking follows the pointer to the place in memory and checks that the actual VALUES are the same.
For example, Equivalent code in elixir, a language for which == does a deep comparison:

A= [1, 2] 
B = [1, 2] 
A == b # will return true, because elixir performs a deep comparison of the lists.

Name type equivalence vs. Structural equivalence

Name equivalence is the norm in Java and Go, as it is easy to do and be checked by a compiler. If two types are to
be compared, it first checks to see that the names of the types are the same. For example, in Java-- user-defined
types (classes) will be considered equivalent if they have the same type name. If you defined two classes with
different names, but the exact same insides, they would not be considered equivalent in the eyes of the compiler.

ClassA { 
Int test = 0;

} 
Class B {

Int test = 0; }

For a function defined as: 
Public static func(A param) { }

If you were to input an object of class B, then java will throw a big hissy fit. This means that java is looking at the
name of the class, not the things inside the class, to determine if they are the same thing.

The only real place that we see Structural equivalence come up is in Go, when talking about structs:

If these two structs were defined in Go:

Type A struct { A int32

B string }

Type B struct { A int32

B string }

 of 9 15

These two classes would be considered equivalent by the program. Note that if the order of A and B were swapped
in the struct, then they would not be considered structurally equivalent.

 of 10 15

(Part	2	—	answer	1	of	8-10)	

8.	Write	a	program	in	Elixir	to	find	the	second	largest	number	in	a	list	of	
numbers.	You	may	assume	that	the	input	will	always	consist	of	a	single	list	
and	that	the	list	will	contain	only	numbers.	Do	not	use	anything	in	Enum.	If	
the	list	is	empty,	return	0.	If	the	list	has	only	one	item,	return	that	item.

defmodule Sec do

 @doc """

 Find the smallest, in a rather imperative way.

 Just go through the list and use if to check.

 At least use tail recursion to do the work

 first parm is the current smallest item

 second is the list

 """

 def sst(cs,[]) do

 # return the smallest

 cs

 end

 def sst(cs, [h|r]) do

 if cs<h do

 sst(cs,r)

 else

 sst(h,r)

 end

 end

 @doc """

 Must the same as sst, but does the work using matching

 """

 def sst2(cs,[]) do

 cs

 end

 def sst2(cs, [h|r]) when h<cs do

 sst2(h,r)

 end

 def sst2(cs, [_|r]) do

 sst2(cs, r)

 end

 @doc """

 Here we pass the smallest and the second smallest along in the

 recursion, so can find second smallest in a single pass

 through the list. But there is a lot more work and it does not

 scale to find the nth smallest. Note th use of both sst3/1 and

 sst3/3

 """

 of 11 15

 def sst3([]) do

 0

 end

 def sst3([h|[hh|r]]) do

 if h<hh do

 sst3(r,h,hh)

 else

 sst3(r,hh,h)

 end

 end

 def sst3([h|r]) do

 h

 end

 def sst3([], smllest, next_small) do

 next_small

 end

 def sst3([h|r], smllest, _next_small) when h<smllest do

 sst3(r, h, smllest)

 end

 def sst3([h|r], smllest, next_small) when h<next_small do

 sst3(r, smllest, h)

 end

 def sst3([_|r], smllest, next_small) do

 sst3(r, smllest, next_small)

 end

 @doc """

 The top-level code to get the second smallest

 using only a smallest finder.

 """

 def smll([]) do

 0

 end

 def smll([h]) do

 h

 end

 def smll([h|r]) do

 smallone = sst2(h,r)

 [sh|sr] = [h|r] -- [smallone]

 sst2(sh, sr)

 end

end

IO.inspect Sec.smll([2,3,4,5,6,7])

IO.inspect Sec.smll([-2,-4,-9,-8,-7,-3])

IO.inspect Sec.sst3([2,3,4,5,6,7])

IO.inspect Sec.sst3([-2,-4,-9,-8,-7,-3])

 of 12 15

(Part	2	—	answer	1	of	8-10)	

9.	Horner’s	method	is	a	technique	for	converting	a	string	into	a	number	that	
is	fairly	unique	from	the	number	derived	from	other	strings.	The	idea	is	to	
take	the	string,	and	work	with	the	ASCII	value	of	each	character.	First,	
choose	a	prime	number	—	call	it	P.	Working	from	either	the	beginning	or	end	
of	the	string,	multiply	the	ASCII	value	of	the	first	character	by	P^(n-1),	
add	that	to	the	second	ASCII	value	multiplied	by	P^(n-2)	etc.

So,	for	instance,	if	the	word	is	“Act”	and	P=3	and	we	are	working	from	the	
front	of	the	string	the	calculation	would	be		

(3^2)*’A’+(3^1)*’c’+(3^0)*’t’

9*65+3*99+116

998

Another	way	of	phrasing	this	calculation	is:

((‘A’*3)+’c’)*3+’t’

To	transform	a	String	into	a	list	of	chars	in	Elixir	use	to_charlist(string).	
For	example:

iex(11)>	to_charlist("Act")

‘Act'

Note	that	that	return	value	is	in	single	quotes.	This	is	how	Elixir	chooses	
to	render	character	lists.

Implement	Horner’s	method	in	Elixir.		You	may	hard-code	the	value	P=3

defmodule ESum do

 def main(lst) do

 Enum.reduce(lst, 0, fn(elem, acc) ->
(acc*3+elem) end)

 end

end

IO.puts ESum.main(to_charlist("Act"))

 of 13 15

(Part	2	—	answer	1	of	8-10)	

10.	The	function	split245	takes	two	parameters,	a	value	on	which	to	split,	
and	a	list	to	be	split.

It	returns	two	lists	contained	in	a	tuple.	The	first	list	is	items	less	than	
the	value,	the	second	is	items	greater	than	the	value.	Items	equal	to	the	
value	should	be	thrown	out.	Order	in	the	returned	lists	is	not	significant.	
For	example	(given	that	split245	is	defined	within	the	module	Ss):

Ss.split245(6,	[2,4,7,8,6,9,5,2,4])

would	return

{[2,4,5,2,4],	[7,8,9]}

Note	that	this	example	shows	order	preserved;	reversed	or	anything	else	is	
fine.

Write	the	split245	function.	It	should	be	tail	recursive	and	have	a	
complexity	of	O(n)	when	n	is	the	length	of	the	provided	list.	A	full	credit	
answer	will	have	NO	if	expressions.	(each	“if”	will	loose	1	point)

defmodule Spl do

@moduledoc “””

NOTE: this is essentially the splitter used by Quicksort.

Three(!) different splitting functions. They all work!

"""

 @doc """

 A not-tail recursive solution to the splitting problem.

 This version does use an if, which I could avoided by

 the recursive pair of functions trick in rr (below), or with a guard
clause, but given

 that I am not doing tail recursion I choose to use an if and

 loose a point.

 """

 def ntr([], _spl) do

 {[], []}

 end

 def ntr([spl|r], spl) do

 ntr(r, spl)

 end

 def ntr([h|r], spl) do

 a=ntr(r, spl)

 if h<spl do

 {[h|elem(a,0)], elem(a,1)}

 else

 {elem(a,0), [h | elem(a,1)]}

 end

 end

 @doc """

 Split the list into two parts. This kind of cheats on the

 "no if" requirement in that it uses a "when" guard clause.

 """

 def ss([], _, lss, mre) do

 {lss, mre}

 end

 def ss([h|r], h, lss, mre) do

 ss(r, h, lss, mre)

 end

 def ss([h|r], spl, lss, mre) when h<spl do

 ss(r, spl, [h|lss], mre)

 of 14 15

 end

 def ss([h|r], spl, lss, mre) do

 ss(r, spl, lss, [h|mre])

 end

 def spl(lst, spl) do

 ss(lst, spl, [], [])

 end

@doc """

Do the splitting completely without if statements

(and no guards either!) so ONLY matching. I did this

by using a pair of recursive functions, with differ in that

one of the pair has an extra parameter. That extra param is a boolean

to determine whether the item on the head of the the list should

go into the smaller or the larger of the splits. With that handled

by matching, then call the first function again.

Question, can you have a tail-recursive pair of functions.

Probably not.

"""

 def rr([], _, lss, mre) do

 {lss, mre}

 end

 def rr([h|r], h, lss, mre) do

 # case where split value is in list, throw it out

 rr(r, h, lss, mre)

 end

 def rr([h|r], spl, lss, mre) do

 rr3(h, r, spl, lss, mre, h<spl)

 end

 def rr3(h, r, spl, lss, mre, true) do

 rr(r, spl, [h|lss], mre)

 end

 def rr3(h, r, spl, lss,mre, _) do

 rr(r, spl, lss, [h|mre])

 end

 def splr(lst, spl) do

 rr(lst, spl, [], [])

 end

end

IO.inspect Spl.ntr([-1,-2,-3,-4,-5,-6,-7,-6,-5,-6,-7,-8,-9], -6)

IO.inspect Spl.ntr(~w[this is a test of the dead sty eye], "m")

 of 15 15

