
1. The difference between 2 sides of the semicolon war was that while some
programs use semicolon to have the mere effect of separating statements (for
example, this allows us to write multiple statements on the same line like in
Python: print(‘a’); print(‘b’); print(‘c’)), other programs see semicolon as an
indicator of statement termination (basically indicates where an instruction ends
and where the next instruction begins).

For usage of semicolons in Java and Go: in both programs, they are used as terminator,
but unlike Java in which the semicolons needs to appear in the source, Go utilizes a
tool to insert semicolons automatically as it scans, which is why the input code for Go
rarely contains semicolons. That tool’s basic metaphor is to add a semicolon whenever
a new line starts after a token/value that could terminate a statement. This also explains
why in Java it is easy to add semicolon when writing a statement and go to the next
line, while in Go mostly every statement has to be kept within a single line.

Example:

Java: 
public static void main(String args[]) {

int ex1 = 11; 
String ex2 = “ is the test number.”; System.out.println(ex1 + ex2);

} 

Go 
func() main {

ex1 := 11 
ex2 := " is the test number."

fmt.Printf("%d %s\n", ex1, ex2) }

2. Thrown out. Non-compilation was due to a misunderstanding on my part. My apologies.

3. Go being statically typed means that the type is decided at writing time, not compile time. In
languages like Java, this means explicitly writing out what that type is when you declare a

variable, however in Go this is not necessary because you implicitly declare a variable type when
you assign it to a value.

Go can do this because among the common value types (ints, floats, Strings, bools, etc.), it is
easy to see even with the naked eye the difference between them. For example, floats will always
have a decimal, ints will be numbers without decimals, Strings have to have quotation marks,
and bools are only true or false. The Go compiler is built to interpret these different hints and
assign a variable its type (if not explicitly given) this way. Though this makes it appear
dynamically typed because it physically writes similar to Python in that way, Python is dynamic
because the variable types can change throughout the code, whereas they are static in Go, and
therefore cannot change.

Personally, I am a fan of this method in Go, but mostly just because I am lazy. I get very tired of
looking up different ways to initialize variable types with each language I learn since I
sometimes have trouble remembering specific syntax differences between them. Remembering
just to follow a simple structure of “variable := value” is much easier for me, so I consider it a
win.

4. Java passes reference to array into subroutine, so changes made inside the function change the
one instance of the the array.  
Go passes COPY into subroutine, some changes made to array in sub do not affect original 
Arrays created inside subroutine in Java are on heap, in Go on Stack. 
On return, in Java, returns a reference. In Go, return is a copy of the thing from the stack (else it
would go away). That is proof of return by value by analysis. In the example below, the
function returns a closure and any array (yuck) in Go, because Go returns a copy, the array in
the closure is independent of the array returned

package main

import "fmt"

func bbb() (func(), [3]int) {

 var arr [3]int

 arr[0]=5

 fmt.Printf("BBB %d\n", arr[0])

 clo := func() {

 fmt.Printf("clo %v\n", arr)

 }

 return clo, arr

}

func main() {

 clo, arr := bbb()

 clo()

 fmt.Printf("Main: %v\n", arr)

 arr[0] = 17

 fmt.Printf("Main: %v\n", arr)

 clo()

}

5.

6. Methods are defined on types. Hence, the following is an equals method for the type TT

package main

import "fmt"

type TT []int

func (t TT) equals(slice2 TT) bool {

 if len(t) != len(slice2) {

 return false

 }

 for i := 0; i < len(t); i++ {

 if t[i] != slice2[i] {

 return false

 }

 }

return true

}

GO:

a: compile time

pi compile time

Main:

ht: heap

z stack

m2:

mm stack

q heap

r stack

Java p1 compile

p2 compile

vv pointer at compile, array from heap

PP:

ii stack

Main:

args heap (or stack)

aa stack

inst heap

p3:

prm stack

all heap

hmss heap

func main() {

 var a1,a2 TT

 for i:=0; i<10; i++ {

 a1 = append(a1, i)

 a2 = append(a2, i)

 }

 fmt.Printf("%t\n", a1.equals(a2))

}

7

• stack	frame	b(0)	 
bval=9,	 
resume	to	end	of		line	13	in	func	a

• Stack	frame	a(7)	 
val	=	7,	 
resume	to	end	of		line	19	in	func	b

• Stack	frame	b(5)	 
bval	=	5,	 
resume	to	end	of	line	13	in	func	a

• Stack	frame	a(3)	 
val	=	3,	 
resume	to	end	of	line	19	in	func	b

• Stack	frame	b(1)	 
bval	=	1,	 
resume	to	end	of	line	11	in	func	a

• Stack	frame	a(0)	 
val	=	0,	 
resume	to	end	of	line	6	in	main

• Stack	Frame	main() 
No	local	variables 
No	resume	point	as	no	caller

Question	8: 
1.	Scope	1:	Outside	of	all	functions	(1	to	24)	

-	Active:	ss	(global	variable) 
2.	Scope	2:	inside	main	function	(5	to	13)	

-	Active: 
+	ss	(global	variable)	-	only	active	from	line	6	to	line	7	and	from	line	10	to	12	+	
aa,	ss	(local	variable	inside	of	if	statement)	-	only	active	from	line	8	to	line	9	

3.	Scope	3:	inside	first	if	statement’s	body	block	(line	7	to	10)	-	Active:	aa,	ss	
(local	variable	inside	if	statement)	

4.	Scope	4:	in	the	first	if	statement	(line	7)	-	Active:	aa,	ss	(global	variable)	

5.	Scope	5:	inside	first	else	statement	(line	10	to	12)	-	Active:	aa,	ss	(global	
variable)	

6.	Scope	6:	inside	f2	function	(line	14	to	24)	

-	Active: 
+	ss	(local	variable,	declared	in	function	f2)	+	f,	qq	(declared	in	the	if	
statement) 
+	qq	(declared	in	the	for	loop)	

7.	Scope	7:	inside	the	nested	function	(line	15	to	20)	

-	Active: 
+	ss	(local	variable,	declared	in	function	f2)	+	qq	(declared	in	the	if	statement)	

8.	Scope	8:	inside	the	second	if	statement	(line	16) 
-	Active:	ss	(local	variable,	declared	in	function	f2)	

9.	Scope	9:	inside	the	second	if	statement’s	body	block	(line	16	to	19)	

-	Active: 
+	ss	(local	variable,	initialized	in	function	f2)	+	qq	(declared	in	the	if	statement)	

10.	Scope	10:	inside	the	for	loop’s	body	(line	21	to	23)	

-	Active: 
+	ss	(local	variable,	initialized	in	function	f2)	+	qq	(declared	in	the	for	
statement)	

11.	Scope	11:	in	the	for	statement	(line	21)	

-	Active: 
+	ss	(local	variable,	initialized	in	function	f2)	+	qq	(declared	in	the	for	
statement)	

