
CS245 Midterm 1
Name:

Start Time:

Finish Time: 

I have abided by the Honor Code. I have not discussed this test with anyone.

(Sign below)

If	you	take	this	test	on	separate	sheets	of	paper,	make	the	above	your	first	
page.

There	are	8	questions	in	this	test.		All	questions	
have	equal	weight.	Be	sure	to	answer	all	of	the	
questions. 

Page of 1 9

1.	Semicolons	—	the	semicolon	“wars”	were	about	whether	semicolons	separate	
statements	or	terminate	statements.		Distinguish	between	these	(do	not	just	
use	the	example	from	the	article).		How	are	semi-colons	used	in	Java	and	Go	
(separator,	terminator,	or	something	else?)	Explain.	Illustrate	with	
examples.

Page of 2 9

2.	In	Go,	the	type	interface{}	can	be	used	kind	of	like	Object	in	Java;	that	
is,	variables	declared	to	be	of	“interface{}”	can	store	anything.		For	
instance,	the	following	is	a	perfectly	fine	function	in	Go

func	mm()	{

				var	m3	interface{}

				m3=9

				fmt.Println(m3)

				m3="hello"

				fmt.Println(m3)

}

Now,	consider	arrays	and	slices	as	in	the	two	code	snippets.	One	of	these	
snippets	works	(compiles	and	runs	without	error).		One	does	not.	Explain	(if	
you	are	not	sure,	then	speculate).		

	

func main() {

 bb := make([]interface{}, 2)

 bb[0]="hello"

 bb[1] = 9

 fmt.Println(bb)

}

func main() {

 var bb [2]interface{}

 bb[0]="hello"

 bb[1] = 9

 fmt.Println(bb)

}

Page of 3 9

3.	Go	is	statically	typed.		This	is	true.	Yet,	in	many	situations	the	
programmer	is	not	required	to	identify	the	type.		Explain	how	Go	can	relieve	
programmers	of	this	burden.		Finally,	do	you	consider	this	ability	of	Go	a	
win;	a	loss	or	meh.		Why?

Page of 4 9

4.	Arrays	in	Java	and	Go	behave	rather	differently.		This	difference	is	
especially	evident	when	arrays	are	passed	into	subroutines,	created	within	
subroutines	and	returned	from	subroutines.	Write	two	very	brief	programs	—	
they	need	actually	only	be	parts	of	programs	—	you	will	not	loose	points	for	
small	syntax	errors	—	that	illustrate	these	differences.			Explain	how	your	
programs	make	these	differences	evident.

Page of 5 9

5.	For	the	following	programs	in	Java	and	Go	for	each	variable	in	the	
program.	state	whether	that	variable	is:	allocated	at	compile	time,	at	run	
time	from	the	stack,	and	at	run	time	from	the	heap.

// prints appear below solely to satisfy

// Go usage requirements

package main

import "fmt"

var a int

var pi float64=3.1415

func main(){

 m2(20)

 ht := make(map[string]string)

 z:="17"

 ht[z]=z

 fmt.Printf("%v\n",ht)

}

func m2(mm int) {

 var q []string

 q=append(q,"qq")

 var r [6]int

 r[1]=mm

 fmt.Printf("%v\n", q)

 fmt.Printf("%v\n", r)

}

import java.util.HashMap;

public class PP {

 static int p1;

 static String p2 = "this is a test";

 int[] vv = new int[10];

 public PP(int ii) {

 PP.p1=42;

 vv[0] = ii;

 }

 public static void main(String[] args) {

 int aa = 5;

 PP inst = new PP(aa);

 inst.p3(17);

 }

 public void p3(int prm) {

 Integer[] ali = new Integer[6];

 ali[1] = prm;

 HashMap<String, String> hmss = new HashMap<>();

 hmss.put("this", PP.p2+prm);

 }

}

Page of 6 9

6.	==	is	not	defined	over	slices	in	Go.		Write	a	complete	Go	program	that	
contains	a	method	named	equals	that	returns	true	if	two	slices	have	exactly	
the	same	contents	and	false	otherwise.	

What	restrictions	are	there	of	your	equals	function.			That	is,	could	it	work	
on	a	slice	slice	type	(with	minimimal	modifications)	and	if	not,	why?

Page of 7 9

7.	For	the	following	recursive	program,	show	the	function	stack	and	all	
important	parts	of	each	stack	frame	(as	discussed	in	class)	in	the	stack	when	
just	before	executing	line	19		when	bval==9.	

					1		package	main

					2

					3		import	"fmt"

					4

					5		func	main()	{

					6										a(0)

					7		}

					8

					9		func	a(val	int)	string	{

				10										if	val	<	3	{

				11																		return	b(val	+	1)

				12										}	else	if	val	<	9	{

				13																		return	b(val	+	2)

				14										}

				15										return	"aa"

				16		}

				17

				18		func	b(bval	int)	string	{

				19										a(bval	+	2)

				20										return	fmt.Sprintf("b%d",	bval)

				21		}

Page of 8 9

8.	For	the	following	program,	identify	every	scope	and	the	variables	that	are	
active	in	that	scope	under	static	scoping.		Identify	scopes	using	the	line	
numbers.	If	there	is	any	possibility	of	name	ambiguity	(and	there	will	be)	be	
sure	to	clear	identify	the	active	variables	clearly.

					1		package	main

					2

					3		var	ss	int	=	19

					4

					5		func	main()	{

					6										aa	:=	"ss"

					7										if	aa	==	"bb"	{

					8																		ss	:=	210

					9																		f2(ss)

				10										}	else	{

				11																		f2(ss)

				12										}

				13		}

				14		func	f2(ss	int)	{

				15										f	:=	func(ss	int)	{

				16																		if	ss	>	7	{

				17																										qq	:=	ss	/	2

				18																										println(qq)

				19																		}

				20										}

				21										for	qq	:=	ss;	qq	>	0;	qq--	{

				22																		f(qq)

				23										}

				24		}

Page of 9 9

