
Why do Java, Go and Rust all have a “main”?

https://alexwlchan.net/2020/why-do-programming-languages-have-a-main-function/

The do because C, does

C does because B did but BCPL (which preceded B) has Start rather than Main

Sec 1.2

	 Declarative

	 	 Not how but what (a 4th/5th generation language)?

	 	 SQL, ProLog

facts:

	 %% Footloose (1984)

	 cast(['Kevin Bacon', 'Lori Singer', 'John Lithgow', 'Dianne Wiest']).

	 cast(['John Lithgow', 'Robin Williams', 'Mary Beth Hurt', 'Glenn Close']). % world
according to garp

rules:

	 co_starred(X, Y) :-

	 	 cast(L),

	 	 member(X, L),

	 	 member(Y, L),

	 	 X \== Y.

	 next_node(C, N, P) :-

	 	 co_starred(C, N),

	 	 \+ member(N, P).

	 dfs(G, G, _, [G]).

	 dfs(S, G, V, [S|P]) :-

	 	 next_node(S, NN, V),

	 	 dfs(NN, G, [NN|V], P).

	 count_edges([_], 0).

	 count_edges([_|T], N) :-

	 	 count_edges(T, N1),

	 	 N is N1 + 1.

	 bacon_number(X, N) :-

	 	 setof((L, P), (dfs('Kevin Bacon', X, [], P), length(P, L)), [(_, SP)|_]),

	 	 count_edges(SP, N).

USE:

	 co_starred('Kevin Bacon', 'Val Kilmer').

false.
bacon_number('Kevin Bacon', 0).
true .

?- bacon_number(X, 1).
X = 'Bill Paxton' ;

bacon_number(X,2).
X=‘Glenn Close’ ;

https://alexwlchan.net/2020/why-do-programming-languages-have-a-main-function/

etc

	 Imperative

	 	 Most languages

	 Functional

	 	 No variables, no side effects

	 	 see Quicksort/qsort.ex

sec 1.3

	 what makes a programming language successful?

	 	 The first three are about the language itself, the rest are about social factors.

	 	 • Successful languages must have modest or minimal computer resource

requirements.

	 	 • Successful languages must have a simple performance model.

	 	 • Successful languages must not require users have “mathematical sophistica-

tion.”

	 	 • The language must be available on a wide variety of hardware.

	 	 • It helps to have local wizards or gurus for the language.

	 	 • It must be a minimally acceptable language.

	 	 • It must be similar to existing popular languages

Sec 1.4

Greenness??

On average, the compiled languages consumed 120J to execute solutions, while for virtual
machine languages and interpreted languages, the value was 576J and 2365J, respectively.

This trend can also be observed in the case of execution time, as compiled languages
required 5103ms, virtual machine languages 20623ms, and interpreted languages 87614ms
(on average).

https://stratoflow.com/efficient-and-environment-friendly-programming-languages/

Why new languages

	 languages are accepted and evolve socially

	 languages minimal resources

	 simple “performance model”

	 	 easy to know fast vs slow operations

	 	 alternately: what is a primitive operation in Big-O sense.

	 	 Non trivial to determine in many langs:

	 	 drawing 10,000,000 rands ints then sorting

	 	 	 Go: 	 array of structs by number: 	 2.88

	 	 	 	 array of ints	 	 	 2.636930156s

	 	 	 Elixir: 	 list of integers		 	 5.7

 	 list of structs sort by integer	 17.98

	 	 	 Rust:	 vec of integers	 	 7.57 - 8.54s

	 	 	 	 vec of struct of int	 	 6.96s

	 	 	 	 optimized:

	 	 	 	 	 0.807

	 	 	 	 	 0.824

 	 	 Java: array of int: 	 	 	 1.1

 	 	 	 array of instances of a class 	6.6

	 	 	 python: array of int: 	 	 	 14.24

	 	 	 	 array or array of 1 int	 	 43.12 or 18.96

	 	 	 	 array of dicts	 	 	 22.6

	 	 	 	 array of objects	 	 23.1

	 	 factor numbers up to 200,000 by “trial division”

	 	 	 Go: 122.5 seconds

	 	 	 Rust: 116.67 seconds

	 	 	 	 optimized 23.04 sec

 	 Elixir: ~250 seconds

	 	 so what is the speed difference between Go, Elixir and Rust?

	 	 	 	

	 easy to understand

	 ALSO for a new lang:

	 	 widely available

	 	 local experts

	 	 “minimally acceptable”

	 	 similar to existing langs

	 	

	 reason to move

Bad languages

	 APL: instrumented in greek

	 	 	 Game of life

	 	 	 	 lf:((2×+⌿¯1 0 1⊖⍤0 2+⌿¯1 0 1⌽⍤0 2 ⍵)-⍵)∊5 6 7

Every cell interacts with its eight neighbours, which are the cells that are horizontally, vertically,
or diagonally adjacent. At each step in time, the following transitions occur:

1. Any live cell with fewer than two live neighbours dies, as if by underpopulation.
2. Any live cell with two or three live neighbours lives on to the next generation.
3. Any live cell with more than three live neighbours dies, as if by overpopulation.
4. Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

Null — why is null a “billion dollar mistake”

Null was introduced in Algol to speed programs. Idea, allow reading off the end of array. Just
always return null if you do so.

	 How does this speed things up?

	 what cost saftey?

	

	 	 https://hinchman-amanda.medium.com/null-pointer-references-the-billion-
dollar-mistake-1e616534d485

	 	 “…. a null pointer reference could be a bad idea. Comparing a null pointer
reference to a promiscuous adulterer he noted that the null assignment for every bachelor
represented in an object structure “will seem to be married polyamorously to the same person
Null”.

	 	 	

WHAT IS A COMPILER?

	 what does a compiler do?

	 	 translate from high-level language into machine language

	 	 2 aspects

	 	 	 thorough analysis

	 	 	 non-trivial transformation

	 	 	 	 eg. tail-recursion to iteration

Compiled languages

	 	 Source code ——> COMPILER ——> machine executable

 input // \\ output

	 C, Go, fortran, …..

What is alternative to compiler?

	 interpreter

	 	 Source Code 	——>

	 	 	 	 	 Interpreter ——> Output

	 	 Input 	 	 ——>

	 Python, lisp, perl, javascript

	 why have a compiler vs interpreter?

	 	 tradeoffs between

https://en.wikipedia.org/wiki/Moore_neighborhood
https://hinchman-amanda.medium.com/null-pointer-references-the-billion-dollar-mistake-1e616534d485
https://hinchman-amanda.medium.com/null-pointer-references-the-billion-dollar-mistake-1e616534d485
https://hinchman-amanda.medium.com/null-pointer-references-the-billion-dollar-mistake-1e616534d485

	 	 	 interpret: flexibility, diagnostics (at run time)

	 	 	 	 LISP: program can write code that it executes

	 	 	 	 late binding

	 	 	 compile: speed!!!!

	 “Byte-compiled languages” — Java, Erlang

	 	 Source ——> Translator ——> Intermediate program

	 	 	 	 	 	 	 \\//

	 	 	 	 	 Input ——> Virtual Machine ——> Output

	 Virtual Machine???? Why?

	 	 “java — write once, run everywhere”

	

	

Languages built on top of other languages

	 Kotlin, groovy, scala, clojure uses JVM

	 	 also JVM implementations of many common languages

	 Elixir uses Erlang VM

	

	 Why this use of virtual machines at all?

	 Does it make sense?

Another way of looking at PLs

https://medium.com/codex/what-are-the-greenest-programming-languages-
e738774b1957

Tiobe Community popularity Survey from tiobe.com

https://www.tiobe.com/tiobe-index/

also rust == 19th, go=15th

Factors making a programming language easier to learn.

https://medium.com/codex/what-are-the-greenest-programming-languages-e738774b1957
https://medium.com/codex/what-are-the-greenest-programming-languages-e738774b1957

1. Availability of free resources: Various courses and tutorials make it easier for learners to
grasp the language quickly.

2. Consistent rules and simplicity: Programming languages that adhere to uniform rules will
simplify learning new commands and functions, enabling beginners to grasp the concepts
more quickly.

3. Integration with other languages: Making it more versatile and user-friendly for
beginners.

4. Syntax resembling simple English: Programming languages with straightforward syntax
that incorporates English words and closely resembles the English language structure are
more relatable and accessible for beginners to comprehend and learn.

5. Large developer community: A supportive community helps learners to grow and
troubleshoot any issues they may face.

Factors making a programming language harder to learn.

1. Complex and unusual syntax: Some languages have complicated rules for structuring
code or unconventional ways of organizing it, making it difficult for beginners to
understand and write.

2. Multiple programming paradigms: A language that supports various programming styles
can take more work, as it requires understanding different approaches to solving
problems, such as functional programming, which emphasizes immutability and
mathematical functions.

3. Error handling and predicting output: In some languages, it is challenging to identify and
fix errors or bugs, and developers may need to anticipate the results of their code before
running it, making it more difficult for newcomers.

4. Technical jargon and abstract concepts: Some languages use specialized terms and
concepts or involve abstract ideas, making them harder to grasp for people without a
background in computer science.

5. Domain-specific focus and limited code reuse: Some languages are designed for specific
purposes, such as artificial intelligence, making them less accessible to general users.
Additionally, it can be challenging to reuse code snippets in specific languages, making it
harder to learn from examples and build upon existing code.

6. Expert guidance needed: Some languages require the guidance of an experienced tutor or
mentor to understand and learn effectively.

https://techreviewer.co/blog/the-easiest-and-hardest-programming-languages-to-learn

