
Scott Ch 3

“Names, Scopes and Bindings 
Not section 3.4 — in general skip content of book that has anything to do with implementation

Binding times

	 language design

	 language implementation — integer precision is specified by language

	 	 C=No; Java,Go=Yes

	 program writing

	 compile — layout of static memory, etc

	 link — separate modules come together

	 	 go — imports

	 load — memory layout on machine

	 run

For example, in Java .. consider the program static_java/Sttc.java. What do you expect the
output to be.

	 implementers of JVM made a choice for speed to statically allocate integers -128—127

	 How does this improve speed???

	 Note: this can be changed to increase size of cached ints

	 	 java -Djava.lang.Integer.IntegerCache.high=1024 Sttc

Each important. Each has effect on everything. Discuss

Early binding == speed. late binding==flexibility

	 Early=C,Go,Java Late=Python (and interpreted langs), Lisp, Elixir

	 Also, early binding allows code analyzers (e.g. compiler) to detect issues before run
time.

static vs dynamic :: usually static == fixed at compile time and dynamic==changeable at run
time

Object lifetime

	 following book with use the word “object” to refer to a thing in memory

	 lifetime == time between creation and destruction.

	 3 basic storage allocation mechanisms

	 	 static

	 	 	 globals exists as long as program exists

	 	 	 limited by space on device.

	 	 	 lifetime - life of program

	 	 stack

	 	 	 An area of memory for holding the set of currently active functions. 	 	
	 	 	 	 a single function may be on the stack more than once

	 	 	 	 Functions are represented on the stack by a “stack frame”

	 	 	 stack is literally a stack of stack frames

	 	 	 	 What is a “stack frame”?

	 	 	 	 	 A thing that exists as long as the function is “running”

	 	 	 	 	 Could be much longer as a result of closures and first
class functions

	 	 	 	 	 contains: variables in scope in function

	 	 	 	 	 contains: pointer back to the calling frame to the place
where the function was called

	 	 	 Java thread call stack size 1MB

	 	 	 C: given (and changable) by “ulimit -s” default 8192

	 	 	 Go: “While the minimum stack size is defined as 2048 bytes, the Go
runtime does also not allow goroutines to exceed a maximum stack size; this maximum
depends on the architecture and is 1 GB for 64-bit and 250MB for 32-bit systems”

	 	 	 Recursion depth: depends on stack size

	 	 	 	 See static_java/RecursionTest.java

	 	 	 	 Java 1M=~10000

	 	 heap

	 	 	 space limited by space on machine

	 	 	 THIS IS NOT the Data structure for priority queues and heap-sort

	 	 	 lifetime == from explicit creation until either explicit destruction or GC

	 	 	 If there is no automatic garbage collection Objects allocated from heap
have no necessary way in which they are de-allocated. Memory leaks.

	 	 	 Java — “new” allocates memory from heap. Has GC

	 	 	 Garbage collection or not — just mention

	 	 	 	 C malloc and free. No GC.

	 	 	 Go make(). Has GC

	 	 See L04/life_go

	 stack allocation and recursion

	 	 tail recursion special form that can be dome without allocating / deallocating a
new stack frame so much quicker. We will return to this in discussion of recursion

Scope

“The textual region of a program in which a binding is active”

Alternately “a scope is a program region of maximal size in which no bindings change”

	 NOTE — this is related to , but distinct from , lifetime

	 static — almost every language and probably any language you encounter

	 	 so called because the scope of every var can be determined at compile time.

	 	 when you go into a function, the variables “in scope” are globals plus vars in fun

	 	 Note” Static” here is NOT same as java static

	 dynamic — vars available depend on EVERY function on the stack

	 	 write quick example on board

	 nested subroutines

	 	 Java does not allow, but Java does have nested objects that present many of
the same issues

	 	 Go allows nested funcs but with syntax change

	 	 	 cannot do “func a() rtn {}”

	 	 	 can do “a:=func () rtn {}” or “var a= func() rtn {}”

	 	 	 NOTE: outside a fun can declare a function

	 	 	 	 “var a = func() rtn {}” or “func a() rtn {}”

	 	 	 	 BUT NOT “a := func() rtn {}”

	 Blocks — in many languages denoted by {}

	 	 blocks define another scope

	 	 Javascript

	 	 	 Block scoped variable

	 	 	 function scoped variable

	 	 	 global scoped variable

	 	 	 Q: for a var defined within a block, what is its scope

	 	 	 	 whole block? Only after it appear within the block?

	 	 Blocks can nest. What happens with same var name in nested blocks

	 	 	 Java — NOT allowed

	 	 	 GO — nest2_go

Declaration order — does a block scoped variable exist everywhere within its block?

This is especially a problem for recursive structures (linked lists, trees, etc)

If name is not known throughout block, then how can item refer to itself?

	 declaration vs definition.

Name Meaning

alias — single object with multiple different names

	 aliases require a reference rather than a value

	 Go uses value model but make in Go returns references

	 alias_go

	 	 alias works because slices are actually pointers to a memory location , so a and
b point to same thing

	 	

polymorphism — single name — multiple objects

	 Overloading

	 	 + can be applied to lots of things

	 	 	 some langs allow program to add new capabilities

	 	 function names following is legal in Java but not in Go

	 	 	 func a(i int) {

 	 	 	 	 fmt.Println(i)

	 	 	 }

	 	 	 func a(i int, ii int) {

 	 	 	 	 fmt.Printf("%v %v \n", i, ii)

	 	 	 }

	 	 	 What does java do to make reuse of function names legal/possible??

	 	 	 Why does Go not do this??

	 	 	 	 “””Method dispatch is simplified if it doesn't need to do type
matching as well. Experience with other languages told us that having a variety of methods
with the same name but different signatures was occasionally useful but that it could also be
confusing and fragile in practice. Matching only by name and requiring consistency in the types
was a major simplifying decision in Go's type system.”””

	 Generics

	 Note that overloading must be resolvable at compile time

	 Java 	

Hidden variables.

	 name reused in enclosing scope.

	 Java does not allow in functions but you can get this with inheritance

	 	 see static_java AA and AB functions pp, p3 and p4	

Closures

	 “A closure in a lanugage with static scoping captures the current instance of every
object at the time the closure is created”

	 Closures still apply with recursion, but don’t go there if you can avoid it.

	 closures only apply in languages that allow nested functions and functions that can be
returned from other functions.

	 	 NO Java

	 	 YES Go

	 	 see closure_go

	 Extent!!!

	 	 with closures …

	 	 you need to know not just if a var is in scope, but if it can ever be in scope
again.

	 	 in java, scope and extent are same — because java does not have closures

	 	 in Go, a var defined on the stack can live on as a result of closure, so while is
scope is static and known at compile time, extent only be known at runtime

	 	 see closure_go

	 	 	 closures and extent apply all over the place!!!

First class:

	 value can be:

	 	 passed as param

	 	 returned from function

	 	 assigned to a variable.

Second class

	 only passed as param

Third class

	 None of these

	 	 Java!!

	 	 	 BUT “object closures”

	 	 	 	 see ObClo_java

Lambda expressions — another day

