
Composite types

Ch 8 Scott

The line between “built-in and composite types is thin

Is a string built in?

	 Not (quite) in C

What defines a composite type?

Record / structs

	 Go - struct

	 Rust struct

	 Java class

	

	 Why have records?

	 Implications of reference model vs value model on records

	 Is Go anonymous include equivalent to inheritance in Java??

	 What is stored in a go struct?? Overhead??

	 	 see size_go/structsize.go

see size_rust/scr/main.rs

	 What is stored in a java class?? Overhead?? How do you even know what the
overhead of a java class instance is?

	 	 short answer — you do not .. but This was on stackOverflow

	 copy and Equality

	 	 a==b

	 	 what is difference in Go and Rust and Java?

	 	 	 again value-model vs reference model language

	 	 	 see equal_go/equal.go

In a modern 64-bit JDK, an object has a 12-byte header, padded to a multiple of 8 bytes, so the
minimum object size is 16 bytes. For 32-bit JVMs, the overhead is 8 bytes, padded to a
multiple of 4 bytes. (From Dmitry Spikhalskiy's answer, Jayen's answer, and JavaWorld.)

Typically, references are 4 bytes on 32bit platforms or on 64bit platforms up to -Xmx32G;
and 8 bytes above 32Gb (-Xmx32G). (See compressed object references.)

As a result, a 64-bit JVM would typically require 30-50% more heap space. (Should I use a 32-
or a 64-bit JVM?, 2012, JDK 1.7)

Boxed types, arrays, and strings

Boxed wrappers have overhead compared to primitive types (from JavaWorld):

• Integer: The 16-byte result is a little worse than I expected because an int value
can fit into just 4 extra bytes. Using an Integer costs me a 300 percent memory
overhead compared to when I can store the value as a primitive type

• Long: 16 bytes also: Clearly, actual object size on the heap is subject to low-level
memory alignment done by a particular JVM implementation for a particular CPU type.
It looks like a Long is 8 bytes of Object overhead, plus 8 bytes more for the actual long
value. In contrast, Integer had an unused 4-byte hole, most likely because the JVM I
use forces object alignment on an 8-byte word boundary.

Other containers are costly too:

• Multidimensional arrays: it offers another surprise. 
Developers commonly employ constructs like int[dim1][dim2] in numerical
and scientific computing. 
In an int[dim1][dim2] array instance, every nested int[dim2] array is an
Object in its own right. Each adds the usual 16-byte array overhead. When I don't
need a triangular or ragged array, that represents pure overhead. The impact grows
when array dimensions greatly differ. 
For example, a int[128][2] instance takes 3,600 bytes. Compared to the 1,040
bytes an int[256] instance uses (which has the same capacity), 3,600 bytes
represent a 246 percent overhead. In the extreme case of byte[256][1], the
overhead factor is almost 19! Compare that to the C/C++ situation in which the same
syntax does not add any storage overhead.

https://stackoverflow.com/a/32224498/6309
https://stackoverflow.com/a/35407947/6309
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html
http://www.lowtek.ca/roo/2008/java-performance-in-64bit-land/
http://www.javacodegeeks.com/2012/12/should-i-use-a-32-or-a-64-bit-jvm.html
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html

	 	 	 	 in particular, for go show the addresses of objects in equal_go	

	

Arrays

	 usually homogenous type

	 	 	 Why homogenous????

	 	 	 	 value-model language it is kind of required

	 	 	 	 	 Go array vs Slice what is stored where

	 	 Exactly What is stored in an array in Java

	 	 Java since everything inherits for Object can make non-homo array

	 	 	 easy in reference model language

	 	 	 	 easy with subtype polymorphism

	 	 	 Note that similar game is harder in value model Go

	 usually contiguous in memory

	

	 Go/Rust — arrays MUST be sized at compile time!! (Why?)

	 	 arrays contain the objects, literally. So each spot in otherwise “empty” array
actually contains the sting with zero value(s).

	 	

	 Go/Rust — slices contain REFERENCES!!! Why? So what?

	 	 consider difference between

	 	 a := b for array and slice in Go

	 	 	 for array, everything is new! Copying can be expensive

	 	 	 for slice, the address of the slice is new (value model)

	 	 	 	 but all the content is the SAME (copy the references)

	 	 	 WHY?

	 	 	 Heap allocation vs stack allocation!!!

Row-Major & Column major ordering

	 	 assumes array contained in contiguous block of memory

	 	 Looking at pointer addresses in Go you can see this.

	 	 Suppose A is 7x10 array

	 	 R-M

	 	 	 A[2,4] followed by A[2,5] … a[2,6],a[3,0]

	 	 C-M

	 	 	 a[2,4], a[3,4] … a[9,4],a[0,5]

	 	 Why do I care?

	 	 	 Max performance says always access memory locations near each other

	 	 	 so nested for loop for R-M

	 	 	 	 for i 0..6

	 	 	 	 	 for j 0..9

	 	 	 	 	 	 a[i][j]

	 	 	 For C-M

	 	 	 	 for j 0..9

	 	 	 	 	 for i 0..6

	 	 	 	 	 	 a[i][j]

	 	 	 Easy to build multi-d array in RM so almost all languages use Column-
major
	 	 see size_go/rowmajor.go

see rowmajor_rust/src/main.rs

Does java use row-major or column major??? Probably neither but since you cannot really see
where thigns are stored, you cannot tell. See rowmajor_rust for what Java likely does

	

Composite equality checks

Go == on structs compares the stuff inside — a deep check. (again, kind of natural in value
model)

	 	 Go defines == over array and does a deep check!!!

	 	 	 no == over slices!!! Why? (slices could contain themselves, Why is this a
problem?)

	 	

Associative arrays (maps), sparse arrays, …

	 are these really arrays? Or are they something else that just uses the same syntax?

========================= stop roughly here on 11/14 ========================

Strings:

	 are they a primitive type in the language

	 	 C, Rust — definitely not

	 	 Java, Go— might as well be.

	 	 	 J,G — String is a fixed entity. A length change (append) makes new
string

	 	 	 	 Java StringBuffer, StringBuilder

	 	 	 Go: “A string is an immutable sequence of bytes”

	 Why are strings immutable????

	 	 String Pool

	 	 	 a place to store string literals

	 	 	 String pool — I imagine as a hashtable<String, String>

java “intern”

	 see string_intern/Interner.java

	 does go have string interning?

	 	 yes for strings known at compile time

	 	 	 no otherwise (no privided intern method)

	 	 	 see string_intern/intern.go

	 	 	 In big apps string pool can save lots of space

for instance, a collection of books by Scott and Gibon has 2.6M words … but only 70000
unique

	 	 Security

	 	 	 anti hacking. Mutable strings could let hackers attack. For instance,
person passes a string — we validate — in background they change ….

	 	 Thread Safety

	 	 	 immutable strings are thread safe

	 Note that all of these arguments in favor of immutable strings can be generalized to
immutable everything!

	 	

Recursive types

	 E.g. Linked lists

	 	 How to Handle in Value-model langs like Go.

	 Answer Pointers!!!

	 	 see pointer_go — already discussed so this code is review

	 	 see tree_go — lots of points to make

	 Linked list in Rust

	 	 and the null safe problem

	 	 see ll_rust/src/main.rs

	 	

	 	 	

new operator in Go / Java allocates from heap.

	 stack allocation auto reclaimed when frame complete (closures aside), but heap is
forever!

Garbage collection

	 Reference Counting

	 	 when the number of references goes to zero, reclaim

	 	 	 problem — circular structures

	 	 	 problem, how to count

	 	 	 fragmentation of memory

	 Mark-and-sweep

	 	 1. mark everything as useless

	 	 2. start with all non-heap pointers and recursively follow. Mark everything
touches as good

	 	 3.Go through heap and destroy everything not marked as good

	 Stop and Copy

	 	 split memory in half

	 	 Rather than mark and sweep, in step 2, copy from current to new. Then delete
anything not copied. Next time, switch current and new

Lists, etc

	 difference between list and array?

	 pointer following?

	 typically not indexed (why not??)

	 Go: no list type?

	 	 as a package, but NOT a language primitive

	 Homogeneous vs heterogenous

	 Opinion: lists are associated with functional programming because they are one with
LISP.

	 	

	 Counter argument. A: Lists can be built recursively by appending to the front. In so
doing you can add items to list without changing the list as it was previously seen. Lists built in
such a way are therefore perfect fit for functional programming.

	 	 	 B: Linked lists are amenable to immutability — indeed immutability
makes sharing of linked list parts a practical thing

	 For beginning of an implementation

	 	

	 	 Go: tree_go (a tree rather than a linked list

	 Subsections of arrays/lists

	 	 go slice[start:end] returns that part of slice between start and end

	 	 Java: neither arrays nor ArrayList have subsections built in.

	 	

	 	

	

