
CMSC 246: Systems
Programming

 
Spring 2021 

Instructor: Geoffrey Towell

The Shell
• The “shell” is a program that runs other programs

• An ordinary program, not a part of the OS (kernel)

• When you do things in Unix command line you do it through a shell

• Lots of “flavors of shells”

• defaults

• bash on CS machines (also available: sh, tcsh, csh, git-shell, zsh

• zsh on Macs (also bash, csh, dash, sh, tcsh)

• powershell on Windows10

• Shells come with a small set of “builtins”: cs, ls, etc (68 in bash, 100+ in zsh)

• There are a lot of non-builtin (usually written in C)

• more than 2500 on lab machines

2

Unix Time!!!
• cd

• absolute path

• relative path

• ~

• ls

• flags: -l -a -r { -t -S }

• pwd

• PATHs

• how to find executables

• more / less / cat

• cat > file

• man

• man 3 cFunc

• the	3	says	to	show	the	man	page	from	section	3	of	the	manual

• section	3	contains	C	functions

• Sadly man pages for C are NOT installed on powerpuff

• They are installed on macs! 3

More Unix … “the PATH”
• The one true PATH …

• does not exist in Unix

• The PATH is the place where Unix looks for executable programs

• /usr/local/sbin:/usr/local/bin:/usr/bin:/usr/lib/jvm/default/bin:/usr/bin/
site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/usr/bin

• /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/

local/games:/snap/bin

• When you give a name like a.out, Unix looks in the path to find the first executable

with that name, then runs it.

• Order of directories in PATH matters!

• Override path search by putting directory information before the executable

• so ./a.out says “look only in the current directory for the executable a.out”

• Properly this is the “Executable path”. Other paths exists.
4

Input
• scanf() is the C library’s counterpart to printf.

• somewhat akin to Java Scanner.

• Syntax for using scanf() 
 
scanf(<format-string>, <variable-reference(s)>) 

• Example: read an integer value into an int variable data.

	scanf("%d", &data); //read an integer; store into data 

• The & is a reference operator. More on that later!

5

Reading Input
• Reading a float:

	 float x; 
scanf(“%f", &x);

• "%f" tells scanf to look for an input value in float format (the
number may contain a decimal point, but doesn’t have to).

• Reading a double:

	 double x; 
scanf("%lf", &x);

• Reading an int:

	 int x; 
scanf("%d", &x);

• Reading a long:

	 long x; 
scanf("%ld", &x); 6

Standard Input & Output Devices
• In Linux the standard I/O devices are, by default, the keyboard for

input, and the terminal console for output. 

• input and output in C, if not specified, is always from the standard input
and output devices. That is,

• printf() outputs to the standard output device

• default: the terminal

• scanf() always inputs from the standard input device

• default: the keyboard 

• Later, you will see how these can be reassigned/redirected to other
devices.

7

Program: Convert Fahrenheit to Celsius
• The c2f.c program prompts the user to enter a Fahrenheit

temperature; it then prints the equivalent Celsius
temperature.

• Sample program output:

	Enter Fahrenheit temperature: 212

	Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

8

Program: Convert Fahrenheit to Celsius 
f2c.c
#include <stdio.h>

int main(void)

{

 float f, c;

 printf("Enter Fahrenheit temperature: ");

 scanf("%f", &f);

 c = (f – 32) * 5.0/9.0;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;

} // main() Sample program output:

	 Enter Fahrenheit temperature: 212

	 Celsius equivalent: 100.0

9

For scanf:

%f ==> float

%d ==> double

%lf ==> double

%ld ==> long

printf: just %f, %d

Improving ctof.c
Look at the following command: 
 
c = (f – 32) * 5.0/9.0;

First, 32, 5.0, and 9.0 should be floating point values: 32.0, 5.0, 9.0 
 
Second, by default, in C, they will be assumed to be of type double 
Instead, we should write 
 
c = (f – 32.0f) * 5.0f/9.0f; 
 
What about using constants/magic numbers?

10

Defining constants - macros
#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f/9.0f) 
 
So we can write: 
 
c = (f – FREEZING_PT) * SCALE_FACTOR; 
 
When a program is compiled, the preprocessor replaces each macro by the value that
it represents.

During preprocessing, the statement 

c = (f – FREEZING_PT) * SCALE_FACTOR; 

will become

c = (f – 32.f) * 5.0f/9.0f;

This is a safer programming practice.
11

Program: Convert Fahrenheit to Celsius 
ctof.c
#include <stdio.h>

#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f/9.0f)

int main(void)

{

 float f, c;

 printf("Enter Fahrenheit temperature: ");

 scanf("%f", &f);

 c = (f – FREEZING_PT) * SCALE_FACTOR;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;

} // main()

Sample program output:

	 Enter Fahrenheit temperature: 212

	 Celsius equivalent: 100.0

12

Input from the command line

13

#include <stdio.h>

#include <stdlib.h> // needed for atof

#define GALLONS_PER_LITER 0.2641

#define KILOMETERS_PER_MILE 1.609

int main(int argc, char const *argv[])

{

 if (argc < 2) {

 printf("Usage: %s number\n", argv[0]);

 printf(" where: number is a US style MPG estimate\n");

 return 0;

 }

 double mpg = atof(argv[1]);

 double lp100km = (1 / mpg) * (1 / GALLONS_PER_LITER) * (1 / KILOMETERS_PER_MILE) * 100;

 printf("%5.2f liters per 100km \n", lp100km);

 return 0;

}

Shooting yourself in the foot
• APL

◦ You shoot yourself in the foot and then spend all day figuring out how to do it in fewer characters.

◦ You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened.

◦ @#&^$%&%^ foot

• C

• You shoot yourself in the foot and then nobody else can figure out what you did.

Java

• You write a program to shoot yourself in the foot and put it on the Internet. People all over the world shoot themselves in the foot, and everyone leaves

your website hobbling and cursing.

• You amputate your foot at the ankle with a fourteen-pound hacksaw, but you can do it on any platform.

• Lisp

◦ You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you

shoot yourself in the appendage which holds the gun with which you shoot...

◦ You attempt to shoot yourself in the foot, but the gun jams on a stray parenthesis.

• Linux

◦ You shoot yourself in the foot with a Gnu.

Perl

• You separate the bullet from the gun with a hyperoptimized regexp, and then you transport it to your foot using several typeglobs. However, the program

fails to run and you can't correct it since you don't understand what the hell it is you've written.

• You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife.

• You shoot yourself in the foot and then decide it was so much fun that you invent another six completely different ways to do it.

Python

• You shoot yourself in the foot and then brag for hours about how much more elegantly you did it than if you had been using C or (God forbid) Perl.

◦

14

Keywords
• The following keywords can’t be used as identifiers:

	 auto enum restrict* unsigned

	 break extern return void

	 case float short volatile

	 char for signed while

	 const goto sizeof _Bool*

	 continue if static _Complex*

	 default inline* struct _Imaginary*

	 do int switch

	 double long typedef

	 else register union

• Keywords (with the exception of _Bool, _Complex, and
_Imaginary) must be written using only lower-case letters.

• Names of library functions (e.g., printf) are also lower-case.

15

If and Switch statements in C
• A compound statement has the form

	 { statements } 

• In its simplest form, the if statement has the form

	 if (expression) compound/statement 

• An if statement may have an else clause:

	 if (expression) compound/statement else compound/statement 

• Most common form of the switch statement:

	 switch (expression) {

	 case constant-expression : statements

	 …

	 case constant-expression : statements

	 default : statements

	 }

16

Arithmetic Operators
• C provides five binary arithmetic operators:

	 +	 addition

	 -	 subtraction

	 *	 multiplication

	 /	 division

	 %	 remainder

• An operator is binary if it has two operands.

• There are also two unary arithmetic operators:

	 +	 unary plus

	 -	 unary minus

17

Logical Expressions
• Several of C’s statements must test the value of an expression

to see if it is “true” or “false.”

• In many programming languages, an expression such as i < j

would have a special “Boolean” or “logical” type.

• In C, a comparison such as i < j yields an integer: either 0

(false) or 1 (true).

18

Relational Operators
• C’s relational operators:

	 < 	 less than

	 >	 greater than

	 <=	 less than or equal to

	 >=	 greater than or equal to

• C provides two equality operators:

	== 	 equal to

	!=	 not equal to

• More complicated logical expressions can be built from simpler ones by

using the logical operators:

	 !	 logical negation

	 &&	 logical and

 || logical or

These operators produce 0 (false) or 1 (true) when used in expressions.

19

Logical Operators
• Both && and || perform “short-circuit” evaluation: they first evaluate the left

operand, then the right one.

• If the value of the expression can be deduced from the left operand alone, the

right operand isn’t evaluated.

• Example:

	 (0 != i) && (j / i > 0)

	 (0 != i) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is evaluated.

• If i is 0, the entire expression must be false, so there’s no need to evaluate (j /
i > 0). Without short-circuit evaluation, division by zero would have occurred.

• if (i=5) … is LEGAL in C!

• it returns 5, which is NOT 0 so TRUE

• Best to always put constants on LHS of comparison

20

Relational Operators & Lack of Boolean 
Watch out!!!
• The expression

	i < j < k

	 is legal, but does not test whether j lies between i and k.

• Since the < operator is left associative, this expression is

equivalent to

	(i < j) < k

	 The 1 or 0 produced by i < j is then compared to k.

• The correct expression is i < j && j < k.

21

Loops
• The while statement has the form

	 while (expression) statement

• General form of the do statement:

	 do statement while (expression) ;

• General form of the for statement:

	 for (expr1 ; expr2 ; expr3) statement

	 expr1, expr2, and expr3 are expressions.

• Example:

	 for (i = 10; i > 0; i--)

	 printf("T minus %d and counting\n", i);

• Variables can be declared within for

	 for (int i = 0; i < n; i++)

	 …

22

The printf Function
• Ordinary characters in a format string are printed as they appear in the

string; conversion specifications are replaced.

• Example:

	 int i, j;

	 float x, y;

	 i = 10;

	 j = 20;

	 x = 43.2892f;

	 y = 5527.0f;

	

	 printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:

	 i = 10, j = 20, x = 43.289200, y = 5527.000000

23

The printf Function
• Compilers aren’t required to check that the number of

conversion specifications in a format string matches the
number of output items.

• Too many conversion specifications:

	printf("%d %d\n", i); /*** WRONG ***/

• Too few conversion specifications:

	printf("%d\n", i, j); /*** WRONG ***/

24

The printf Function
• Compilers aren’t required to check that a conversion

specification is appropriate.

• If the programmer uses an incorrect specification, the program

will produce meaningless output:

	 printf("%f %d\n", i, x); /*** WRONG ***/

25

Conversion Specifications
• A conversion specification can have the form %m.pX or %-m.pX,

where m and p are integer constants and X is a letter.

• Both m and p are optional; if p is omitted, the period that separates

m and p is also dropped.

• In the conversion specification %10.2f, m is 10, p is 2, and X is f.

• In the specification %10f, m is 10 and p (along with the period) is
missing, but in the specification %.2f, p is 2 and m is missing.

26

Conversion Specifications
• The minimum field width, m, specifies the minimum number of

characters to print.

• If the value to be printed requires fewer than m characters, it is right-

justified within the field.

• %4d displays the number 123 as •123. (• represents the space character.)

• If the value to be printed requires more than m characters, the field
width automatically expands to the necessary size.

• Putting a minus sign in front of m causes left justification.

• The specification %-4d would display 123 as 123•.

27

Conversion Specifications
• The meaning of the precision, p, depends on the choice of X,

the conversion specifier.

• The d specifier is used to display an integer in decimal form.

• p indicates the minimum number of digits to display (extra zeros are

added to the beginning of the number if necessary).

• If p is omitted, it is assumed to be 1.

28

	 tprintf.c

	 /* Prints int and float values in various formats */

	 #include <stdio.h>

	 int main(void)

	 {

	 int i;

	 float x;

	

	 i = 40;

	 x = 839.21f;

	

	 printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);

	 printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

	

	 return 0;

	 }

• Output:

	 |40| 40|40 | 040|

	 | 839.210| 8.392e+02|839.21 |

29

Lab 2/18
• Write a program that

• takes an integer as input from the keyboard (or the command line)

• calculates the Nth Fibonacci number (N is the integer input)

• Use printf to write a nicely formatted table like:

• Columns are: index, fibb(n-2), fibb(n-1), fibb(n), fibb(n)/fibb(n-1)

30

 3 1 1 2 2.000000

 4 1 2 3 1.500000

 5 2 3 5 1.666667

 6 3 5 8 1.600000

 7 5 8 13 1.625000

 8 8 13 21 1.615385

 9 13 21 34 1.619048

Escape Sequences
• The \n code that used in format strings is called an escape

sequence.

• Escape sequences enable strings to contain nonprinting

(control) characters and characters that have a special
meaning (such as ").

• A partial list of escape sequences:

Alert (bell)		 \a

Backspace	 	 \b

New line	 	 \n

Horizontal tab	 \t

31

Escape Sequences
• A string may contain any number of escape

sequences:

	 printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line
heading:

	Item Unit Purchase

	 Price Date

32

How scanf Works
• scanf tries to match groups of input characters with

conversion specifications in the format string.

• For each conversion specification, scanf tries to locate an

item of the appropriate type in the input data, skipping blank
space if necessary.

• scanf then reads the item, stopping when it reaches a

character that can’t belong to the item.

• If the item was read successfully, scanf continues processing the rest

of the format string.

• If not, scanf returns immediately.

33

How scanf Works
• As it searches for a number, scanf ignores white-space

characters (space, horizontal and vertical tab, form-feed,
and new-line).

• A call of scanf that reads four numbers:

	 scanf("%d%d%f%f", &i, &j, &x, &y);

• The numbers can be on one line or spread over several
lines:

	 1

	 -20 .3

	 -4.0e3

• scanf sees a stream of characters (¤ represents new-line):

	 ••1¤-20•••.3¤•••-4.0e3¤

	 ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

• scanf “peeks” at the final new-line without reading it.

34

How scanf Works
• When asked to read an integer, scanf first

searches for a digit, a plus sign, or a minus sign;
it then reads digits until it reaches a nondigit.

• When asked to read a floating-point number,
scanf looks for

• a plus or minus sign (optional), followed by

• digits (possibly containing a decimal point), followed

by

• an exponent (optional). An exponent consists of the

letter e (or E), an optional sign, and one or more
digits.

• %e, %f, and %g are interchangeable when used
with scanf.

35

How scanf Works
• When scanf encounters a character that can’t be part of the

current item, the character is “put back” to be read again
during the scanning of the next input item or during the next
call of scanf.

36

How scanf Works
• Sample input:

	1-20.3-4.0e3¤

• The call of scanf is the same as before:

	scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s how scanf would process the new input:

• %d. Stores 1 into i and puts the - character back.

• %d. Stores –20 into j and puts the . character back.

• %f. Stores 0.3 into x and puts the - character back.

• %f. Stores –4.0 × 103 into y and puts the new-line character back.

37

Ordinary Characters in Format Strings
• When it encounters one or more white-space characters in a

format string, scanf reads white-space characters from the
input until it reaches a non-white-space character (which is
“put back”).

• When it encounters a non-white-space character in a format

string, scanf compares it with the next input character.

• If they match, scanf discards the input character and continues

processing the format string.

• If they don’t match, scanf puts the offending character back into the

input, then aborts.

38

Ordinary Characters in Format Strings
• Examples:

• If the format string is "%d/%d" and the input is •5/•96, scanf

succeeds.

• If the input is •5•/•96 , scanf fails, because the / in the format

string doesn’t match the space in the input.

• To allow spaces after the first number, use the format string
"%d /%d" instead.

39

Confusing printf with scanf
• Although calls of scanf and printf may appear similar, there

are significant differences between the two.

• One common mistake is to put & in front of variables in a call

of printf:

	 printf("%d %d\n", &i, &j); /*** WRONG ***/

40

Confusing printf with scanf
• Incorrectly assuming that scanf format strings should

resemble printf format strings is another common error.

• Consider the following call of scanf:

	scanf("%d, %d", &i, &j);

• scanf will first look for an integer in the input, which it stores in the

variable i.

• scanf will then try to match a comma with the next input character.

• If the next input character is a space, not a comma, scanf will

terminate without reading a value for j.

41

Confusing printf with scanf
• Putting a new-line character at the end of a scanf format

string is usually a bad idea.

• To scanf, a new-line character in a format string is equivalent

to a space; both cause scanf to advance to the next non-
white-space character.

• If the format string is "%d\n", scanf will skip white space,

read an integer, then skip to the next non-white-space
character.

• A format string like this can cause an interactive program to

“hang.”

42

Program: Adding Fractions
• The addfrac.c program prompts the user to enter two

fractions and then displays their sum.

• Sample program output:

	Enter first fraction: 5/6

	Enter second fraction: 3/4

	The sum is 38/24

43

addfrac.c

/* Adds two fractions */

#include <stdio.h>

int main(void)

{

 int num1, denom1, num2, denom2, result_num, result_denom;

 printf("Enter first fraction: ");

 scanf("%d/%d", &num1, &denom1);

 printf("Enter second fraction: ");

 scanf("%d/%d", &num2, &denom2);

 result_num = num1 * denom2 + num2 *denom1;

 result_denom = denom1 * denom2;

 printf("The sum is %d/%d\n",result_num, result_denom)

 return 0;

}

44

