CS246
Unix: History
C: reading files, Pointers, Makefiles
March 8

Thursday's Lab

* Lines containing z: “z”

« 2 instances of z: “z.*z”

e 2 non-consecutive instances of z: “z.*.z”, or “z..*z”
At least 2 uppercase vowels: “[AEIOU]*[AEIOU]”

« 2 non-| uppercase vowels separated by 10 or more characters:
“[AEOU].......... *[AEOU]”

« some people found numeric quantifiers and wrote
« [AEOU].{10,}[AEOU]
« [AEOU].{103}.*[AEOU]
- fgrep, grep and egrep
» fgrep — basically no regular expression O(M+N)
» grep O(MN)
« egrep — extended regular expression syntax

Unix: History

* Shells remember what you have done

* up arrow to get previous command(s)
* Lines can be edited

« ctrl-a beginning of line

e ctrl-e end of line

» backspace delete prev char

e ctrl-d delete next char

 History goes back a ways
* shell dependent but often 500 or more

Unix : History

« UNIX> history

« command to show you all of the
previous commands remembers

* List is long
* how long??
e history | wc

* really boring to search with up
arrow!

« Use grep!!!
* history | grep grep

« shows all of my usages of
grep in the history

492
493
494
495
496
497
498
499
500
501
502
503

gcc mystrepy.c

a.out

gcc mystrepy.c

a.out

exit

~/public/206/a4/dickens.txt | wc

grep z..*z ~/public/206/a4/dickens.txt | wc

exit

grep z..*z ~/Public/206/a4/dickens.txt | wc

grep z.+z ~/Public/206/a4/dickens.txt | wc

grep "["z]*z["z]*z["z]*" ~/Public/206/a4/dickens.txt
grep "["z]*z["z]*z["z]*" ~/Public/206/a4/dickens.txt

UNIX: history

* |If just want to repeat a command
« 1123
« execute the command with number 123 in the history list

head, tail, and less

« “cat” is OK. It shows the file but it is inconvenient especially on big files

* less == cat with pagination
 spacebar == forward a page
* return == forward a line
* b == backward a page
« /xxx search for xxx
* head
« show the first 10 lines of file
* head -N == show the first N lines of file
e less
« show the last 10 lines of a file
* less -N

Reading Files

« fopen to read a file
* “r” means open for reading

* Style — I name all file vars
“f*” and try to avoid f* for
anything else

* Every call to fopen should be
followed by check to make sure
it worked

o fprintf “file printf”

« first param is the file to
print to

 Read just like reading from stdin
e stdin is a FILE*

 Everything opened must be
closed

file: OpenRead.c

int main(int argc, char const *xargvI[])

{
FILE xfInput = fopen("OpenClose.c", "r");
if (NULL == fInput) {
fprintf(stderr, "Failed to open file for readin
return 1;
+
char line[LINE_LEN];
while (NULL '= fgets(line, LINE_LEN, fInput)) {
fprintf(stdout, "%s'", line);
+
fclose(fInput);
return 0;
I3

« fopen

€

« “r” —read
« “W” — write
« “a” — append
 You can open a lot of FILE*
« there is a bound

 Again, looks almost identical to writing to
stdout

 This copier works only on text files
« fscanf and the buffer overflow attack

* SO avoid use except, maybe, for
keyboard input

 problem, you really do not know
what stdin is reading from

file: OpenCopy.cC

#define LINE_LEN 256

qeadlng and ertlng {int main(int argc, char const xargv[])

if (argc < 3) {
printf("Usage: xxx existing_file_name nan
return 0;

+

FILE xfInput = fopen(argv[1]l, "r");

if (NULL == fInput){
fprintf(stderr, "Failed to open %s for rec
return 1;

+

FILE xfOutput = fopen(argv[2], "w");

if (NULL == fOutput){
fprintf(stderr, "Failed to open %s for out
return 1;

+

char line[LINE_LEN];

while (NULL !'= fgets(line, LINE_LEN, fInput))
fprintf(fOutput, "%s", line);

s

fclose(fInput);

fclose(fOutput);

return 0; 8

file:RetThree.c

Returning multiple
values from a function

int mreturn(int %il1, double *d1, float xf1);

int main(int argc, char const xargvl[])

 C functions only return 1 t it o
int ival = 9;
Value double dval = 12.0;
* But can use PbR to get round float fval = 12.9f;
th]S l]m]tat]On printf("s7d %7.2f %7.2f\n", ival, dval, fval);
mreturn(&ival, &dval, &fval);
e see also scanf orintf("s7d %7.2f %7.2f\n", ival, dval, fval);
return 0;
}

int mreturn(int *il, doublex d1, floatx f1) {
*11 = %11 - 5;
xd1l = %11 / *d1;
*xfl = *xd1 *x *f1;

Arrays, the C way

* recall that for an 2 dimensional array the location calculation is

* LOC = start + index2*RowLength*sizeof(storedThing) +
index1*sizeOf (storedThing)

* Thus every lookup in a 2d-array requires 2 adds and 3
multiplies

« 3-D: 6 multiplies and 3 adds

* 4-D: 10 multiplies and 4 adds

* etc

* (a smart compiler can reduce this in many circumstances)

C style Array access

file: Pointl.c

e Use pointer5! int main(int argc, char const *xargvl[])
. {
» to advance through array, just int arr[10];:
increment the pointer for (int i = 0; i < 10; i++)
. [i] = i+100;
« ++ moves the pointer s
forward by sizeof(type) int karrp = arr;
- += N move forward by A S |
g e prin "%d %d % n', i, *arrp, arrp);
N*sizeof(type) I
* set through pointers also ;
return 0;

* not shown here y

Pointer array access
in 2D

* need to know where you are
« ROW-MAJOR

* in a 2d array, to get the starting
point need the starting point of
a 1d array

 int arr[2][5];
* int *arrp = arr[0];

* while loop is more efficient form
for pointer move over array

* note *earr calculation

file: Point2.c

int main(int argc, char

{

int arr[2][5];
for (int 1 = 0; i < 2; i++)

for (int j = 0; j < 5; j++)

arr[il[j] = ix100 +j;

int xarrp = arrl[0];

for (int i = 0; 1 < 10; i++) {

const *argvl[])

printf("%5d %5d %12d\n", i, *xarrp, arrp);

arrp++;
I3
int xparr = arr[0];
int xearr = parr + (2 x 5);
while (parr < earr) {
printf("%5c %5d %12d\n",
parr++;

', kparr, parr);

Speed of Pointers vs array access

* For common array operations a modern compiler
can optimize array access so much that using
pointers is slower!

* Once upon a time this was always a big win
* Now you have to work harder for the win.
 and the win is often small
* But it can be big
* Lesson:

* if you are doing things with arrays that use
conventional indices, then use array notation

* But think about being tricky with pointers if
you really need the speed

Point3speed1.c
array indices are faster
by about 15%

Point3speed2.c
pointers are faster
by about 5%

Point3speed3.c
pointers are faster by
about 20%

Splitting ¢ across files and Makefiles

* Recall the problem of splitting files and building

» Consider Point3speed3.c file: split.h
* break itupinto 2 .cfileand a .h
e splitM.c #define D1 100
PHLM. , #define D2 100
 only main and the global array #define D3 100
* splitF.c #define COLUM "%10.6f"
* the other functions
« split.h extern int arr[D1][D2] [D3];

* the defines .
. . . void t1();
- function signatures for splitF void t2():
* only need those used in main
* the global array from splitM

Compiling and maketfiles

* Then to compile:
gcc —c splitF.c

gcc —c splitM.c
gcc -0 split splitM.o splitF.o

e When there are only two files remembering all the steps is not hard. When there
are 200 (or more) it gets really hard
eJava: in the first pass through, the java compiler figures out what is dependent on
which and what has changed
*|n second pass (re)compile as necessary
e Makefiles
*a manual setup for what Java does
e(Many IDE’s will generate makefiles)

Makeftiles

« usually in a file named “makefile”
* invoked by Unix command “make”
» make -f “file name other then makefile”

A simple makefile consists of “rules” which are followed by “actions”

* A rule looks like
* name: [dependency]*
« that is a name followed by a list of 0 or more dependencies
* name may either be a useful identifier or the name of a file
« a dependency is either a file name or a rule name

» Actions
« actions must be indented with a tab
e are one or more unix actions
« must be separated from the next rule by a blank line

Makefile rules and dependencies

* Rules detemine if they need to be invoked

« if the dependency is a name that is not the name of a
file

 the rule will be invoked
« if the name is that of a file:
« if dependency is a file

 the dependency file has changed more
recently than the named file

« if the dependency is another name
e that rule determines that it must be invoked

» For example, to determine if the rule “splitF.0” should be
invoked, compare the modification dates of splitF.c split.h
to the file splitF.o

« if either is newer, then this rule is invoked

splitF.o: splitF.c split.h
gcc —c splitF.c

Makeﬂ‘e for Sp“t file: makefile

var = $(notdir $(CURDIR))

» makefile may also define constants for use in ¢ =9
the malfeﬁle])) split: splitM.o splitF.o
« for instance first two lines at right $(cc) —o split splitM.o splitF.o
* full command to invoke
* make -f makefile split splitF.o: splitF.c split.h
« default is to use makefile or Makefile $(cc) —c splitF.c
» normally -f s unnecessary splitM.o: splitM.c split.h
* default is to use first rule $(cc) -c splitM.c
* 50 just “make” in this case
submit:
e rule submit: cd ..; /home/gtowell/bin/submit —c 246

: : : -p 20 -d
* no dependencies so just do it P »lvar)
* the “cd ..” is not permanent; its effect
does not extend beyond the line it is
on.

ab

 Write a Makefile that has 2 rules

* Rule 1. a compile rule that compiles at least one of the ¢ programs
you wrote for homework 2

* Rule 2. a “clean” rule which deletes a.out and any other executables
in the directory

 you can, and should, just hard code in the names of the other
executables to be deletec

» The compile rule should be the default

* |If your make file is more than 6 lines long, you are probably doing
something wrong.

