
Project 8 CS246 Programming Paradigm Fall 2014

Linked List and Binary Search Tree (200pts)
due: Nov 23, 2014 11:59pm

Important Notes

• Submission command: submit -c 246 -p 8 -d YourDirectory

• This is a hard deadline. No late submission is allowed.

• This assignment is to be done on your own. If you need help, see the instructor or TA.

• Please start the assignment as soon as possible and get your questions answered early.

• Read through this specification completely before you start.

• Some aspects of this specification are subject to change, in response to issues detected by
students or the course staff.

1 Introduction

This project is based on your projects 6 and 7 on the name data files. Your program is going to print
out the horizontal histogram describing the popularity of a particular name. For example, the following
histogram shows that over all the years, 15703 female babies were named “Eden” with the total rank
373. Before 1990, “Eden” was not a popular name at all (at least not top 1000). After that, the
popularity of “Eden” has been increasing and reached its peak time in 2012 where 1909 babies were
given this name and it was ranked 164 over all female names.

Eden : total rank (373), total count (15703)

Histogram------------------

1990 133(724)

2000 505(524)

2001 722(397)

2002 797(373)

2003 899(343)

2004 922(341)

2005 987(321)

2006 1023(317)

2007 1342(257)

2008 1479(229)

2009 1560(206)

2010 1701(180)

2011 1724(181)

2012 1909(164)

In this project, for each gender and each distinct name, you are going to represent it with the following
two types of structures:

1 November 10, 2014



Project 8 CS246 Programming Paradigm Fall 2014

struct totalRank {

//Structure to hold the total rank for each individual

//There will be one instance per individual

//It links to the year rank

int rank; //total rank

char name[NAME_LEN+1];

int totalcount; //total count

struct yearRank *yearPointer;

};

typedef struct totalRank DNode;

struct yearRank {

//Structure to hold the year rank for each individual

int year;

int rank;

int count;

struct yearRank *next;

};

typedef struct yearRank YearNode;

For every gender and every name, the rank information for each year (if the name appears in the
corresponding file) and for the total rank can only be stored once. As an example, the information for
female name “Eden” will be saved like this:
[373, "Eden", 15703]→ [1990, 724, 133]→ [2000, 524, 505] → [2001, 397, 722]→
[2002, 373, 797]→ [2003, 343, 899]→ [2004, 341, 922]→ [2005, 321, 987]→
[2006, 317, 1023]→ [2007, 257, 1342]→ [2008, 229, 1479] → [2009, 206, 1560]→
[2010, 180, 1701]→ [2011, 181, 1724]→ [2012, 164, 1909] → NULL where the first node is

of type DNode and the rest are all of type YearNode . Note that you do not store any dump node
where the given name does not appear in that year.

Your goal is to use linked lists and binary search trees to organize these lists by gender to facilitates
fast searching, in other words, to build indices on the data for searching. There are two ways of searching
a name: by the total rank or by name. This means that you need to build two indices for all lists for
each gender.

2 Tasks

1. Process 23 name files and populate data into your data structures. For each name and each
gender, the data structure is already given. You need to find a way to organize all names for each
gender. At the same time, build indices for the data, one has name as the search key and the other
is the total rank. Your program should not waste any space by storing the same information in
different data structures. Your binary search tree should be built balanced so that the complexity
of searching is Θ(logN) where N is the number of distinct (male/female) names.

After you are done with this part, test it right away. If two names (with same gender) have the
same total count, they will have the same rank. For example, the total ranks of male names whose
total counts are 28, 27 or 26 are listed below for your information.

2380 Primitivo 28

2 November 10, 2014



Project 8 CS246 Programming Paradigm Fall 2014

2380 Willy 28

2380 Windell 28

2380 Sigurd 28

2380 Virginia 28

2380 Epifanio 28

2380 Price 28

2380 Adelard 28

2380 Friedrich 28

2380 Dorris 28

2390 Lew 27

2390 Candelario 27

2390 Vidal 27

2390 Toy 27

2390 Arlis 27

2390 Pink 27

2390 Bishop 27

2390 Davie 27

2390 Carolyn 27

2390 Rose 27

2390 Mervyn 27

2401 Ephraim 26

2401 Fortunato 26

2401 Okey 26

2401 Alonza 26

2401 Wellington 26

2401 Heber 26

2401 Hurley 26

2401 Arno 26

2401 Lillian 26

2401 Emma 26

2401 Amador 26

2401 Mearl 26

2401 Brown 26

2401 Buddie 26

2401 Sid 26

2401 Dionisio 26

2. To search and print out the histograms, you have the following options (flags) which will be
implemented by using command line arguments.

• -g gender : search for the female data if “gender” is F or f and male data if “gender” is
M or m.

• -r rank : search by rank where “rank” is a positive integer that stands for the total rank.
All names with the same rank have to be printed out, one histogram per name.

• -n name : search by name where “name” is a string that represents a name.

If there is no -g option, then information has to be printed for both genders.

3 November 10, 2014



Project 8 CS246 Programming Paradigm Fall 2014

For example, if a user runs the program with options “-g f -n Eden -r 20”, your program should
output (order does not matter):

Alyssa : total rank (20), total count (138468)

Histogram------------------

1960 68(923)

1970 296(395)

1980 1648(89)

1990 4929(23)

2000 13444(12)

2001 13148(14)

2002 12747(12)

2003 12688(14)

2004 11975(14)

2005 10726(16)

2006 10134(19)

2007 11146(14)

2008 9607(16)

2009 7935(19)

2010 6934(20)

2011 5989(37)

2012 5054(44)

Eden : total rank (373), total count (15703)

Histogram------------------

1990 133(724)

2000 505(524)

2001 722(397)

2002 797(373)

2003 899(343)

2004 922(341)

2005 987(321)

2006 1023(317)

2007 1342(257)

2008 1479(229)

2009 1560(206)

2010 1701(180)

2011 1724(181)

2012 1909(164)

If a user runs the program with options “-r 2380”, your program should output

Check for the male baby data.

Primitivo : total rank (2380), total count (28)

Histogram------------------

1930 28(953)

Willy : total rank (2380), total count (28)

4 November 10, 2014



Project 8 CS246 Programming Paradigm Fall 2014

Histogram------------------

1900 28(945)

Windell : total rank (2380), total count (28)

Histogram------------------

1940 28(996)

Sigurd : total rank (2380), total count (28)

Histogram------------------

1900 28(942)

Virginia : total rank (2380), total count (28)

Histogram------------------

1930 28(958)

Epifanio : total rank (2380), total count (28)

Histogram------------------

1930 28(947)

Price : total rank (2380), total count (28)

Histogram------------------

1900 28(939)

Adelard : total rank (2380), total count (28)

Histogram------------------

1900 28(924)

Friedrich : total rank (2380), total count (28)

Histogram------------------

1900 28(932)

Dorris : total rank (2380), total count (28)

Histogram------------------

1930 28(944)

Check for the female baby data.

There is no baby name with this rank.

The scale you use to plot the histogram is entirely upto you, the only requirement is that it fits
the screen. Typical unix terminal window is 80x24, you may use larger sizes as most windows are
resizable, but make sure you do not exceed reasonable screen sizes. 80 characters is usually about
half of the screen size on most monitors these days, so 160 characters really should be about as
large as the width should get.

3. Error handling. With any invalid input, your program should prompt usage for the users. For
example, with invalid options “-r -n Eden”, a message might be:

Invalid option.

5 November 10, 2014



Project 8 CS246 Programming Paradigm Fall 2014

Usage: p8.out [-g gender] [-r rank] [-n name]

g: search based on gender. F or f stands for female; M or m stands for male.

r: search by rank.

n: search by name.

4. Clean up the memory. You need to free all the dynamically allocated space.

3 What to submit

• Your source code, including both .c and .h files. Make sure your files are well organized.

• A readme file. In your readme file, you need to explain

1. what data structure you use for building index on total ranks,

2. what data structure you use for building index on names,

3. what is the complexity of searching by name for your program,

4. what is the complexity of searching by rank for your program,

5. what algorithm(s) you use for freeing memories,

6. how to run your program,

7. what a user should expect from your program.

If your program does not fulfill some requirement(s), you need to make a remark in this document.

• A makefile.

6 November 10, 2014


