
Lab 6: Words, Words (and scripts and structs)

Given a text, what is its vocabulary?

That is, how many words are used. For example, the entire text of the children’s book, Green
Eggs and Ham by Dr. Seuss, contains only 50 words.

In this lab we will try and answer two questions about texts:

1. How many words are used in a given text?

2. What are the N most frequent words in a given text?

To answer these questions, you will write a C program and also, solve problems by some of
the Linux commands and utilities.

1. How many words in a given text?

Whenever one has to process text, the tricky question is dealing with punctuations. For
example, in the sentence below:

O’er the ramparts we watched, were so gallantly, streaming?

The apostrophe in the word, O’er, could be replaced by a ‘v’. But what about words like it’s,
didn’t, etc.? Properly addressing these comprehensively requires deep knowledge of syntax
rules which can then be incorporated in a program. Additionally, if we’re only interested in
counting words, we have to normalize words spelled in upper/lowercase letters. For example,
a “The” at the start of a sentence is the same word as “the” elsewhere in a sentence.

In order to simplify issues surrounding punctuations and capitalizations, we will make the
following decision: before processing any text, we will replace all punctuations with a blank
character (thus “O’er” will become “O er”), and we will convert all uppercase letters into
lowercase. This will obviously result in an approximation, but will nevertheless get us started
without too much loss, as you will soon see.

Linux has some very useful commands that come in handy when solving problems. With a good
knowledge of the command set, you do not always have to write programs to address all
processing tasks. The commands enable us to process data much more efficiently and
correctly.

tr – translate or delete characters

This utility “translates” input it gets from standard input. For example:

cat xxx | tr A-Z a-z

converts all uppercase letters in the input, into lowercase letters. Go ahead and enter the
command in your shell and enter some text to see how it works.

Let’s take the Green Eggs and Ham text (in ~gtowell/Public246/Lab6/ham.txt) as our
test input. First, examine its contents (using cat/more/less). Next, try the command:

cat ~gtowell/Public246/Lab05/ham.txt | tr A-Z a-z

You will see that all the text is now converted into lowercase letters. Next try the command:

cat ~gtowell/Public246/Lab05/ham.txt | tr [:punct:] “ “

 1

All punctuation disappears and is replaced by a space character (“ “). Put the two tr
command together to eliminate all punctuation and convert to lower case.

For the next task, in order to count the number of words, we can again, instead of writing a
program, use tr yet again. For example, the first two lines of ham.txt are (what is the unix
command for just printing the first two lines?):

I am Sam  
I am Sam

This should be printed as:

I  
am  
Sam  
I  
am  
Sam

What is the tr command for splitting words into lines in this way?

Now, put these three tr commands together to get the text, downcased, without punctuation;
one word per line.

Finally, to get the number of words in the document, pipe the output through sort then
through uniq

Lastly, all you have to do is count how many words are in the output. How?

For ham.txt you should get 50 (or 51)..

You now have a chain of commands to accomplish the task. Linux allows you to define a
command of your own that will carry out all the commands in the chain as needed. This is
called a script. To create a simple script, create a new file named, getwords, with your piped
commands. It should look like (this is incomplete):

#!/bin/bash  
tr [:punct:] ' ' | tr A-Z a-z

Make sure the above file is executable:

chmod 700 getwords

You can now run the entire set of commands by entering just the name of the script file:

cat ham.txt | ./getWords | wc

This is your first Linux script! We will experiment more with scripts later in the course.

Legend has it that someone challenged Dr. Seuss that he couldn’t write a story using just 50
words. His book, Cat In The Hat, uses only 236 words. Compare this to the vocabulary used in
The Pickwick Papers (Dickens) or the Descent of Man (Darwin). Both are in ~gtowell/
Public246/Lab06 

 2

Copy your script to:

/home/gtowell/submissions/fall2019/cmsc246/lab6/YOURLOGIN_script

2. What are the N most frequent words used in a given text?

First modify your getwords script to remove the wc and uniq (keep the sort if it was there)

Now write a program that processes the output from the bash script to get the N most
common words . Here is the start of an algorithm to get the N most frequent words:

While there are words (in standard input): 
 count the number of times the current word appears 
 find the word with the smallest count 
 if current word count > smallest count 
 replace smallest with current

Print the N words

You can do this all just reading from standard input using the script from part 1.

This task is an excellent opportunity to define and use your first struct. Here is a struct
defintion you might find useful:

typedef struct {  
 char word[50];  
 int count;  
} Words;

Words words[N];

for (int i=0; i<N; i++)  
 words[i].count=0;

 3

