
Lab 10/28: Project Management with Make Files

Today’s lab re-introduces you the following features of C/Linux programming:

• Header files (See Chapter 15 of King)

• Make files (also discussed in Chapter 15, King)

Until now the entire text of your program has probably resided in a single source file. In this
lab we will be working with code from the Airports homework. You can either use your own
code, or mine. Mine might be easier as it follows the text below. However, you should feel
free to use your own.

Make a new directory called for this lab and copy either your code from Airports or mine into
it. (Mine is at /home/gtowell/Public246/Lab1028/airport.c.) Also, for ease of use
make a soft link to the airport data set. (The data is in /home/gtowell/Public246/HW05/
code.txt.)

If needed, please, read and study the program carefully before proceeding.

Task#1: Breaking it up

In the code we define a new data type called, Airport. At least the functions show() and
parseAirport() are directly associated with the Airport type. As in Java (and Python), C
allows you to define a data type in a separate file. In C, you use two files to define a data
type: A header file (ending with the extension “.h”), and a source file (ending with the
extension “.c”). Start by breaking up the file airport.c into three pieces:

• A header file: Airport.h with the following contents

o The definition of the Airport type

o Headers of functions associated with the Airport type: show(), and
parseAirport()

• A source file: Airport.c containing the actual definitions of the Airport functions:
show() and parseAirport()

• A main program file: AMain.c (described below)

The contents of the header file: Airport.h are:

// FILE: Airport.h  
// Define the Airport data structure

typedef struct {  
 char code[5]; // iata code  
 char name[50]; // name of airport  
 char city[30]; // city  
 char state[5]; // state  
 char country[20]; // duh  
} Airport;

// Functions relating to Airport type  
void show(Airport a); // prints out a given airport object  
Airport parseAirport(char * str); // Parse to an Airport object

 1

And the contents of the file: Airport.c

// FILE: Airport.c  
#include <stdio.h>  
#include <string.h>

#include "Airport.h"

void show(Airport a) { // print Airport object  
 …  
} // show()

Airport parseAirport(char * str) { // Parse srt into an Airport object  
 …  
} // parseAirport()

Notice that the file name Airport.h is enclosed in double-quotes and not <…>. This
command essentially says that at that point, the compiler will insert the contents of the
Airport.h file (as if it were just one continuous file).

Finally, edit the file AMain.c to have the following:

#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>

#include "Airport.h"

// Functions for handling Airport database load and search

void readData(char *file, Airport list[], int *n);  
int search(Airport list[], int n, char *code);  
int more();

int main(int argc, char *argv[]) {  
 …  
} // main()

int search(Airport list[], int n, char *code) {  
 …  
} // search()

int more() {  
 …  
} // more()

void readData(char *file, Airport list[], int *n) {  
 …  
} // readData()

Once again, notice that we have the #include command (highlighted). The header file,
Airport.h has all the information that is needed for the compiler to compile the file a6.c

 2

Separate Compilation in C

One advantage of having a program split into multiple files is that you only need to focus on
and edit one file at a time. The GCC compiler allows you to compile an individual file without
compiling all the other files.

To compile a single file, you use the following command:

[Xena@CodeWarrior]$ gcc –c Airport.c

This produces a file named, Airport.o (called an object file). The –c option tells the compiler
to just compile the file specified without attempting to build the entire program. Similarly,
you can then compile the main program file:

[Xena@CodeWarrior]$ gcc –c AMain.c

Now, you will have two object files: AMain.o and Airport.o

You never need to compile a header file. Why?

To build the executable program using the two object files, you now have to give the
command:

[Xena@CodeWarrior]$ gcc –o arprt AMain.o Airport.o

This command tells the compiler to produce a runnable program, a6 by combining the two
object files that are needed to build the complete the program. Once again, you should test
to see if the program is running properly:

[Xena@CodeWarrior]$./arprt code.txt

From now on, all programs you write in C will involve one or more data structures. You should
design the program so that each significant data structure is defined in a separate file (along
with its header file).

Task#2: Make Files

When programs get larger, they are typically split across several files (dozens!). It would be
quite tedious then to try and keep track of all the files that need to be compiled, or
recompiled, and the list of files needed to build a complete runnable program. Linux/GCC has
a very useful tool called, make, that makes this process very easy. Since we now have a
program with three files (Airport.h, Airport.c, AMain.c), it is a perfect situation to
learn how to set up and use make.

Essentially, all the details about compiling and building a program can be defined in a file
called, Makefile. In it, you provide information (rules) on what files are needed to compile
a given source file, how to create a runnable program using all the needed object files, etc.
Furthermore, Linux keeps track of what files have changed; the rules in a make file take care
of the needed compilation process.

Create a new file called, Makefile in the same directory as your program from Task#1. In it,
place the following lines:

AMain: AMain.o Airport.o  
 gcc –c arprt AMain.o Airport.o

 3

 
AMain.o: Airport.h a6.c  
 gcc –c a6.c

 
Airport.o: Airport.h Airport.c  
 gcc –c Airport.c

The Makefile (as shown above) contains three rules. Each rule has the form:

<target>: <files needed to build target>  
<TAB><command needed to build target>

The second line of the rule should always use the TAB character, and NOT spaces. This is a
requirement for specifying make files.

As you can see, the Makefile has three rules:

1. To build a6 (complete program), you need to have current versions of a6.o and
Airport.o  
Then, to produce a6 use the command provided on the second line.

2. To build a6.o, you need to have current versions of Airport.h and a6.c

3. To build Airport.o, you need to have current versions of Airport.h and
Airport.c

Now all you have to do is to use the make command as shown below:

make <target>

For example, for our Makefile:

[Xena@CodeWarrior]$ make AMain  
gcc –c AMain.c  
gcc –c Airport.c  
gcc –o arprt AMain.o Airport.o

Notice that the files were compiled in proper order. To see the “magic” of a make file use the
unix touch command on a6.c — touch a6.c. (What does touch do?) You could also make a
change in the file. Then give the make command again:

[Xena@CodeWarrior]$ make AMain  
gcc –c AMain.c  
gcc –o arprt AMain.o Airport.o

Notice that only the file a6.c needed to be recompiled. If you touch Airport.h and then
give the make command:

[Xena@CodeWarrior]$ make AMain  
gcc –c AMain.c  
gcc –c Airport.c  
gcc –o arprt AMain.o Airport.o

All the files will need to be recompiled because they are dependent on the Airport.h file.
One last time, go ahead and edit the Airport.c file and issue the make command:

 4

[Xena@CodeWarrior]$ make Airport  
gcc –c Airport.c  
gcc –o arprt AMain.o Airport.o

This time, only the Airport.c file will be compiled.

The make command has many useful features beyond those you worked with today (or we
discussed in class several weeks ago).

Task 3:

Copy your Makefile to /home/gtowell/submissions/fall2019/cmsc246/YOURLOGIN-
makefile/lab1028

 5

