
CMSC 246 Systems
Programming

Fall 2019 
Bryn Mawr College

Unix Time!!!
• cd

• absolute path
• relative path
• ~

• ls
• flags: -l -a -r { -t -S }

• pwd
• more / less / cat

• cat > file
• man
• apropos & which

 2

The printf Function
• The printf function must be supplied with a format string,

followed by any values that are to be inserted into the string during
printing:

 printf(string, expr1, expr2, …);

• The format string may contain both ordinary characters and
conversion specifications, which begin with the % character.
• A conversion specification is a placeholder representing a value to

be filled in during printing.
• %d is used for int values
• %f is used for float values

!3

The printf Function
• Ordinary characters in a format string are printed as they appear in the

string; conversion specifications are replaced.
• Example:
 int i, j;
 float x, y;

 i = 10;
 j = 20;
 x = 43.2892f;
 y = 5527.0f;

 printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:
 i = 10, j = 20, x = 43.289200, y = 5527.000000

!4

The printf Function
• Compilers aren’t required to check that the number of conversion

specifications in a format string matches the number of output items.
• Too many conversion specifications:
 printf("%d %d\n", i); /*** WRONG ***/
• Too few conversion specifications:
 printf("%d\n", i, j); /*** WRONG ***/

• If the programmer uses an incorrect specification, the program will
produce meaningless output:

 printf("%f %d\n", i, x); /*** WRONG ***/

!5

 tprintf.c

!6

#include <stdio.h>
int main(void)
{
 int i=40;
 float f=839.21;
 printf("%d|%5d|%05d|%5.3d|\n", i, i, i, i);
 printf(“%f|%10.3f|%10.3e|%010.3f|\n",f,f,f,f);
 printf(“\nRight\n");
 printf("%10s%10s%10s\n%10s%10s%10s\n", "Item", "Unit", "Purchase", "", "Price", "Date");
 printf("\nLeft\n");
 printf("%-10s%-10s%-10s\n%-10s%-10s%-10s\n", "Item", "Unit", "Purchase", "", "Price", "Date");
}

40| 40|00040| 040|
839.210022| 839.210| 8.392e+02|00000839.2|
Right
 Item Unit Purchase
 Price Date

Left
Item Unit Purchase
 Price Date

Escape Sequences beyond \n
• Another common escape sequence is \", which represents the
" character:

 printf("\"Hello!\"");
 /* prints "Hello!" */

• To print a single \ character, put two \ characters in the
string:

 printf("\\");
 /* prints one \ character */

Others \t — tab \b — backspace \a — alarm

!7

Input
• scanf() is the C library’s counterpart to printf.
• Syntax for using scanf()  
 
scanf(<format-string>, <variable-reference(s)>)  

• Example: read an integer value into an int variable data.
 scanf("%d", &data); //read an integer; store into data  

• The & is a reference operator. More on that later!

!8

Reading Input
• Reading a float:
 scanf("%f", &x);

• "%f" tells scanf to look for an input value in float format
(the number may contain a decimal point, but doesn’t have
to).

!9

Standard Input & Output Devices
• In Linux the standard I/O devices are, by default, the keyboard for

input, and the terminal console for output.  

• Thus, input and output in C, if not specified, is always from the
standard input and output devices. That is, 
 
printf() always outputs to the terminal console  
 
scanf() always inputs from the keyboard  

• Later, you will see how these can be reassigned/redirected to other
devices.

 10

Program: Convert Fahrenheit to Celsius
• The c2f.c program prompts the user to enter a Fahrenheit

temperature; it then prints the equivalent Celsius
temperature.
• Sample program output:
 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

 11

Program: Convert Fahrenheit to Celsius 
ctof.c
#include <stdio.h>

int main(void)
{
 float f, c;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &f);

 c = (f – 32) * 5.0/9.0;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;
} // main() Sample program output:

 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

 12

Improving ctof.c
Look at the following command:  
 
c = (f – 32) * 5.0/9.0;

First, 32, 5.0, and 9.0 should be floating point values: 32.0, 5.0, 9.0  
 
Second, by default, in C, they will be assumed to be of type double  
Instead, we should write  
 
c = (f – 32.0f) * 5.0f/9.0f;  
 
What about using constants/magic numbers?

 13

Defining constants - macros
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)  
 
So we can write:  
 
c = (f – FREEZING_PT) * SCALE_FACTOR;  
 
When a program is compiled, the preprocessor replaces each macro by the value that
it represents.
During preprocessing, the statement  

c = (f – FREEZING_PT) * SCALE_FACTOR;  

will become

c = (f – 32.f) * (5.0f/9.0f);

This is a safer programming practice.
 14

Program: Convert Fahrenheit to Celsius 
ctof.c

Sample program output:

 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

 15

#include <stdio.h>
#define FREEZING 32.0f
#define SCALE 1.8f
#define CC(v) (FREEZING + SCALE*v)

int main(void)
{
 float f, c;
 printf("Enter a Celcius temperature: ");
 scanf("%f", &c); // use %lf for double
 f = CC(c);
 printf("%d: Celcius: %.1f Fahrenheit: %.1f\n", i, c, f);
 return 0;
}

Identifiers
• Names for variables, functions, macros, etc. are called

identifiers.
• An identifier may contain letters, digits, and underscores, but

must begin with a letter or underscore:
 times10 get_next_char _done

 It’s usually best to avoid identifiers that begin with an
underscore.
• Examples of illegal identifiers:
 10times get-next-char

!16

Identifiers
• C is case-sensitive: it distinguishes between upper-case and lower-

case letters in identifiers.
• For example, the following identifiers are all different:
 job joB jOb jOB Job JoB JOb JOB
• Convention (for this class — at least)
• Use an upper-case letter to begin each word within an identifier: 
symbolTable currentPage nameAndAddress
• Use all upper case separated by _ for defines  
FREEZING_POINT

• C places no limit on the maximum length of an identifier.

!17

Keywords
• The following keywords can’t be used as identifiers:
 auto enum restrict* unsigned
 break extern return void
 case float short volatile
 char for signed while
 const goto sizeof _Bool*
 continue if static _Complex*
 default inline* struct _Imaginary*
 do int switch
 double long typedef
 else register union

• Keywords (with the exception of _Bool, _Complex, and
_Imaginary) must be written using only lower-case letters.
• Names of library functions (e.g., printf) are also lower-case.

!18

If and Switch statements in C
• A compound statement has the form
 { statements }  

• In its simplest form, the if statement has the form
 if (expression) compound/statement  

• An if statement may have an else clause:
 if (expression) compound/statement else compound/statement  

• Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

 19

Arithmetic Operators
• C provides five binary arithmetic operators:
 + addition
 - subtraction
 * multiplication
 / division
 % remainder

• An operator is binary if it has two operands.
• There are also two unary arithmetic operators:
 + unary plus
 - unary minus

 20

Logical Expressions
• Several of C’s statements must test the value of an expression

to see if it is “true” or “false.”
• In many programming languages, an expression such as i < j

would have a special “Boolean” or “logical” type.
• In C, a comparison such as i < j yields an integer: either 0

(false) or 1 (true).

!21

Relational Operators
• C’s relational operators:
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
• C provides two equality operators:
 == equal to
 != not equal to
• More complicated logical expressions can be built from simpler ones by

using the logical operators:
 ! logical negation
 && logical and

These operators produce 0 (false) or 1 (true) when used in expressions.

!22

Logical Operators
• Both && and || perform “short-circuit” evaluation: they first

evaluate the left operand, then the right one.
• If the value of the expression can be deduced from the left operand

alone, the right operand isn’t evaluated.
• Example:
 (i != 0) && (j / i > 0)

 (i != 0) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is
evaluated.
• If i is 0, the entire expression must be false, so there’s no need to

evaluate (j / i > 0). Without short-circuit evaluation, division by
zero would have occurred.

!23

Shooting yourself in the foot
• APL

◦ You shoot yourself in the foot and then spend all day figuring out how to do it in fewer characters.
◦ You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened.
◦ @#&^$%&%^ foot

• C
• You shoot yourself in the foot and then nobody else can figure out what you did.

Java
• You write a program to shoot yourself in the foot and put it on the Internet. People all over the world shoot themselves in the foot, and everyone leaves

your website hobbling and cursing.
• You amputate your foot at the ankle with a fourteen-pound hacksaw, but you can do it on any platform.

• Lisp
◦ You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you

shoot yourself in the appendage which holds the gun with which you shoot...
◦ You attempt to shoot yourself in the foot, but the gun jams on a stray parenthesis.

• Linux
◦ You shoot yourself in the foot with a Gnu.

Perl
• You separate the bullet from the gun with a hyperoptimized regexp, and then you transport it to your foot using several typeglobs. However, the program

fails to run and you can't correct it since you don't understand what the hell it is you've written.
• You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife.
• You shoot yourself in the foot and then decide it was so much fun that you invent another six completely different ways to do it.

Python
• You shoot yourself in the foot and then brag for hours about how much more elegantly you did it than if you had been using C or (God forbid) Perl.

◦

 24

