
CS246 lab Notes #3 prototypes, header files, preprocessor directives and printf (maybe)

• cal
! Unix calendar program
! cal [[month] year]
! If one number as argument, it displays that year.
! If two numbers as argument, the first is the month, the second is

the year, displays that month.
! Example:

• cal 1 2004
• cal 1742

• Copy the “example.h” file from the handouts directory into your cs246 directory.
• Prototypes reviewed

o Recall a function prototype is the function declaration statement without
the actual code for the function.

o Prototypes tell the compiler that a function exists but will be defined later.
o Why do we have prototypes?

! gcc is a “one-pass compiler”
! It doesn’t go back and figure out what to do with a function they

didn’t know would exist later
! Thus functions would have to be written in a dependency based

order
! Prototypes are used to tell the compiler that a function WILL exist,

but it hasn’t been defined yet.
• Preprocessor

o What is the preprocessor?
! There are advantages to certain things being done before compiling

begins. For example, giving the compiler prototypes for functions
like “printf” so that assembly can be written properly.

! The preprocessor does many convenience jobs, rewrites the source
file without doing any actual compiling.

o #include
! Adds library functions to do specific tasks
! #include <stdio.h>
! This adds the standard output/input functions to the compiled

program
o printf, scanf, etc.

! #include <ctype.h>
o We saw this before, has useful character functions.

! #include <stdlib.h>
o Has some important standard library functions
o exit – forces the program to exit early.

! #include <math.h>
o Has a lot of math functions like trigonometry, exponents,

etc.

o Requires to add “-lm” to the compile statement, for
example:

o gcc –g –Wall –lm –o test test.c
o All the math functions are listed on page 251 in K&R

o #define
! Syntax: #define <replace-ee> <replace-or>
! Example:

o #define BUFFERSIZE 100
o Then you might have code like:
o int buffer[BUFFERSIZE]
o for(i = 0; i < BUFFERSIZE; i++)
o This makes code more readable, and easier to modify

because you change the BUFFERSIZE in one place.
! #define vs. const

o #define is a preprocessor operation, changes text, but is not
part of the actual compiler

o Affects all subsequent code, regardless of scope
o #define can change more than just variables, can represent

functions, etc. but this is not recommended.
o #if, #ifdef, #ifndef, #else, #elif, #endif

! The C preprocessor contains a simplified conditional system.
! Works very similarly to “if-then” statements, but more efficient in

the compiled code because the code removed never even gets
compiled.

! Usage
o #if X == 2 (if X is #defined to be 2)
o #ifdef X (if X is #defined at all)
o #ifndef X (if X is not #defined)
o #else – as expected
o #elif X == 2– “else if X is #defined to be 2”
o #endif – ends the if block

! Often used for cross-platform code
o #ifdef WINDOWS, #ifdef UNIX
o #ifdef LITTLE_ENDIAN

! Dependency checking
o #ifdef is very useful in header files…

• Header files
o We’ve seen header files be used, but not actually written one.
o Header files contain function prototypes, #includes, #defines, global

variables, and other things that we haven’t discussed in lecture yet (structs,
typedefs, enums… but we’ll get to that later)

o The reason for a header file is to make multiple source file
interdependence much simpler (we will get to this later too!).

o When dealing with multiple header files, you may get #include loops.
o To prevent this, use the following convention (illustrated below through

example)

o In file example.h
! #ifndef EXAMPLE_H
! #define EXAMPLE_H
! // header file stuff
! #endif

o Thus if the file is included more than once you cannot have a loop (all the
code in the header will be erased by the preprocessor)

• Multiple source files
o If you have split your source code into more than one file, you must list all

files when compiling: gcc –g file1.c file2.c file3.c –o output
o Try the following exercise:

! write a file input.c which contains two functions, one that takes an
int from the keyboard and returns it, and the other takes a double
from the keyboard and returns it.

! write an appropriate corresponding input.h
! write a lab03.c which uses the two functions defined in input.c, for

example, ask for input of an int and a double from the user and
print them out.

! include all header files properly and compile
• printf

o You can print anything with printf, integers, floats, strings, hexadecimal
numbers, etc.

o Reference sheet is page 154 in K&R
o Special conversion chars

! %d – integer
! %c – character
! %s – string
! %e, %f, %g – floats. e = always scientific notation, f = never

scientific notation, g = either based on number size
! Use leading numbers for display precision
! Escape characters:

• To print non-standard characters, we use the special
character “\” to represent when a character is non standard.

• \n – newline
• \r – carriage return. Equivalent to \n, however there is a

difference on Unix Systems.
• \a – bell
• \b – backspace
• \t – horizontal tab
• \v – vertical tab
• \\ - backslash
• \? – question mark
• \’ – single quote
• \” – double quote
• \000 – octal number
• \xhh – hexadecimal number

• HOWEVER: exception to this is %% is the escape
sequence for %, NOT \%

