
CS246 lab Notes #4 Files, Pipes, Redirection

• File functions
o fopen

! The possible file open types:
o r - Reading only. Start at beginning of file
o r+ - Reading and writing. Note: all writing is

overwriting, not inserting.
o w - Writing only. In other words, deletes contents of

file (sets to 0 length). Cannot read previously written
contents of file.

o w+ - Reading and writing with truncation. In other
words, deletes the whole file, but you can read previously
written contents of file if necessary.

o a - Appending. Cannot read contents of file.
o a+ - Reading and Appending. Can read, but all writes

are done at the end of the file regardless of calls to fseek or
similar.

! Note: The above is machine dependant, you should check before
working on a new platform.

! Also note: adding a "b" to the end of the file open type opens the
file for binary editing.

o Sometimes the operating system does things for
convenience of the user when writing to text files, opening
a file for binary editing suppresses all of these things.

o feof
! feof(<stream>);
! Returns true if you are at the end of a file
! Example: while(!feof(fp)) { /* code */ }

o fflush
! fflush(<stream>);
! Saves all changes to the stream right then instead of waiting for

one of the default pipes.
! Usually unnecessary, as fclose calls it.
! Sometimes things get out of sync; also want to use if the program

is crashing and the changes are not being updated.
• Streams revisited

o The file pointer argument to the above functions is considered a stream
o Also, we've seen three "standard" streams before

! stdin
o Standard Input
o External input to a function
o What scanf, getc, gets take by default

! stdout
o Standard output
o Normal output from a function

o What printf , putc, puts use by default
! stderr

o Standard error
o A different output from a function
o Separate from stdout
o No C function uses this by default, need to use

<func>(stderr, args) to use it:
fprintf(stderr, “out of memory”);

• Piping
o UNIX has the capability to put a program's output somewhere other than

the terminal, such as feed it into another program.
! Basically, UNIX forms a link between the stdout of one program

and the stdin of another program.
o Example: suppose you have a file hw1.c in your directory. Type cat hw1.c

| more
! Remember that cat displays a file to stdout without pause
! cat with no arguments will take input from stdin and display it to

stdout
! cat with multiple arguments (filenames) will concatenate all files

to stdout
o This puts the output of cat hw1.c into the functionality of the more

program.
o Brief tangent:

! New command, finger
! Displays all the users currently logged onto the system.
! There are far too many users to read all on one screen, so try finger

| more
o The advantages of piping are more pronounced when you use some of the

more specialized UNIX utilities.
o Note: you may pipe as many times as you want. A chain of programs

piping to each other is called a pipeline.
! Try: cat | cat | cat | cat | cat
! What happens?

o pipe both stderr and stdout into the next program's stdin.
! csh/tcsh: |&
! bash: must talk about redirection first

• Redirection
o Think about the beginning and end of a pipeline. The stdin is the user

input to the terminal, and the stdout is what is printed to the terminal.
o But what if you want the input from another source, like a file?
o Remember that stdin, stdout and stderr are just special files setup by the

system with specific names. Redirection allows you to use a file in place
of any of the three stream locations.

o Brief tangent:
! wc
! Counts characters, lines, words in a file

! By default displays all; wc is equivalent to wc –clw
! -c – Characters
! -l – Lines
! -w – Words

o stdin from file
! Use < after the command to use the file following it as the input

file.
! Example: try the following three operations.

o wc hw1.c
o wc < hw1.c
o cat hw1.c | wc

o stdout to file
! Use > after the command to use the file following it as the output

file.
! Example:

o ls –l > ls.txt
! That's how we got the long file from the first recitation

o stderr to file (csh/tcsh can not do this)
! In general, stdout is considered the “first” output stream and stderr

the “second”, and thus they are represented by 1 and 2 respectively
! Example:

o bash: cat blah 2> error.txt
o stdout to stderr (csh/tcsh can not do this)

! stdout of a program to is written combined to its stderr
! Example

o bash: cat blah 1>&2
o bash: cat blah 2> error.txt 1>&2
o can you pipe this?

o stderr to stdout (csh/tcsh can not do this)
! stderr of a program to is written combined to its stdout
! Example

o bash: cat blah 2>&1
o bash: cat blah 2>&1 | wc –l
o bash: cat blah >error.txt 2>&1

o both stdout and stderr to file
! Example

o bash and csh/tcsh: cat blah >& error.txt
o bash: mv blah gunk 1>&2 2> error.txt
o How to suppress messages:

! Unix has a file called /dev/null
! It is always empty, even if you redirect to it
! Thus to suppress error messages in bash, just do <command>

<args> 2> /dev/null
! Or to suppress all output (both bash and csh/tcsh): <command>

<args> >& /dev/null

• Excercise:
o Write a C program that prints something to stdout and stderr.
o Redirect program out:

! stdout pipe to wc -l
! stdout only to file
! stderr only to file
! stderr to stdout then pipe to wc -l
! stderr to stdout then to file
! stdout to stderr then to file
! all output to file

