(CS246 Lec07

— Section 1
Today’s Goals Decimal Number System
* Number Systems (Base-10 number system)
* Pointers
o Declaration 123
o Assignment =1x100+2x10+3
o Indirection/de-referencing =1x102+2x10"+3 x 10°
=123,
“base
CS246 1 Lec07 CS246 2 Lec07
Binary Number System Capacity of Binary Numbers
(Base-2 number system)
RN - Bi i . e
101, Bit: Binary Digit * 1 bit can distinguish 2 states (0 or 1).
—1x22+0x2+1x20 * An n-bit binary number can distinguish 2"
states.
=1x4+0x2+1
=550
CS246 3 Lec07 CS246 4 Lec07
Octal Number System Hexadecimal Number System

(Base-16 number system)

(Base—8 number system) haracter correspondence:

C
012345678910 11 12 13 14 15
0123456789 A B C D E F

173,

=1x8+7x8 +3x8°
=1x64+7x8+3
=123,

9AB,,
=9x 162+ 10 x 16" + 11 x 16°
=9x256+10x 16+ 11
=2475,,

CS246 5 Lec07 CS246 6 Lec07

(CS246 Lec07

Byte

1 Byte

* 10001101,

* 8 bits — can distinguish 256 (2°) states

» Representable by 2 hexadecimal characters
816 Dis

CS246 7 Lec07

Kilobyte — KB

» Commonly denoted as KB, Kb, Kbyte or
just K.

+ Equal to 1000 or 1024 (2'°) bytes,
depending on whom you ask.

* One Kb then can distinguish

2% 2% =2"% = 262,144

CS246 8 Lec07

— Section 2
Base-k-to-Decimal Conversion

. 101,
=1x22+0x21+1x2°
=1x4+0x2+1

More generally
=55

value,, =2(y,xk’)
T
=Oxk+@xk'+ & xk°
=9
* 10

CS246 9 Lec07

Decimal-to-Binary Conversion

215 5,0=101,
2)2 ...1 < the rightmost bit (LSB)
1 ...0 < the second bit from the right
)
the leftmost bit (MSB)
MSB = Most Significant Bit
LSB = Least Significant Bit

CS246 10 Lec07

Decimal to hexadecimal

2475,,=9AB,
16) 2475
16) 154 ... 11 < the rightmost bit (LSB)

9 ...10 <second bit from the right

i
the leftmost bit (MSB)
Decimal to Base-k conversions work the

same way

CS246 11 Lec07

— Section 3

Common C Data Types

Type Size Largest | Smallest
[bit] | [byte]| value value
int 32| 4 | 2x10° | —2X10°
double 64 8 Mo -10°%
char 8 1 127 -128

Double stands for “double-precision floating point”.

« Based on 32-bit architecture
« Shaded values are approximate.
* Precision of £loat is 6 digits, double is 9-15 digits.

CS246 12 Lec07

(CS246 Lec07

— Section 4
Variable and Address
* Variable = Storage in computer Memory
memory 2 ;g char
o Contains some value 22 fint
o Must reside at a specific location e
called address ¢[1o
o Basic unit — byte =
= Imagine memory as a one-
dimensional array with addresses ; :
as byte indices TN

o A variable consists of one or more !
bytes, depending on its type (size) address value

CS246 13 Lec07

Pointer — Reference

* A pointer (pointer variable) is a variable that
stores an address (like Java reference)

o value — address of some memory
e type — size of that memory
* Recall in Java, when one declares variables

of a class type, these are automatically
references.

* In C, pointers have special syntax and much
greater flexibility.

CS246 14 Lec07

Memory and Address

» A machine with 16 Megabytes of memory

has ? byteg x 220 = 24 x 2% =16,777,216

Since each byte has a unique address, there are
at least that many addresses

* A pointer stores a memory address, thus the
size of a pointer is machine dependent

+ With most data models it is the largest integer
on the machine, size of unsigned long

* Defined in inttypes.h
o uintptr_ tanduintmax_t
CS246 15 Lec07

— Section 5

Address Operations in C

* Declaration of pointer variables
o The pointer declarator ‘*’

» Use of pointers
e The address of operator ‘&’

o The indirection operator ‘*’ — also known as
de-referencing a pointer

CS246 16 Lec07

Pointer Declaration

» Syntax
o destinationType * varName ;
* Must be declared with its associated type.
» Examples
o int *ptrl; ptrl
A pointer to an int variable
o char *ptr2; ptr2

A pointer to a char variable . .
will contain addresses

CS246 17 Lec07

Pointers are NOT integers

+ Although memory addresses are essentially
very large integers, pointers and integers are
not interchangeable.

* Pointers are not of the same type

+ A pointer’s type depends on what it points to
o int *pl; // sizeof (int)
o char *p2; // sizeof (char)

» C allows free conversion btw different pointer
types via casting (dangerous)

CS246 18 Lec07

(CS246 Lec07

Address of Operator

» Syntax
o & expression

The expression must have an address. E.g., a
constant such as “1” does not have an address.

» Example
o j =1;
int x x II|
£ (&X) ; address = 567

The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1)
is passed to £.

CS246 19 Lec07

Pointer Assignment

* A pointer p points to x if x’s address is
stored in p

» Example

oint x = 1; xm

. address = 567
int *p;

P = &x; P
Interpreted as: P l:—)—» x

CS246 20 Lec07

Pointer Diagram

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

Pointer Assignment

CS246 21 Lec07

* A pointer p points to x if x’s address is
stored in p

» Example

oint x = 1; xm

. address = 567
int *p, *q;

q=rp; a
Interpretedas: p | —F——=x
q //

CS246 22 Lec07

Pointer Assignment

» Example

o int x=1, y=2, *p, *q;

P = &x; q = &y;
q=Pp;

x[1] y[2]

address = 567~.address = 988
p567] q

CS246 23 Lec07

Indirection Operator

» Syntax Note: **'in a declaration and *
in an expression are different.

o * pointerVar int *p; int * p; int* p;
o Allows access to value of memory being pointed to
e Also called dereferencing
» Example
o int x = 1, *p;
P = &x; P l:‘)_‘ x
printf ("%$d\n", *p);
*p refers to x; thus prints 1

CS246 24 Lec07

(CS246 Lec07

Assignment Using Indirection Operator

» Allows access to a variable indirectly through
a pointer pointed to it.

* Pointers and integers are not interchangeable

» Example
oint x =1, *p;

p = &x; pl =
*p = 2; p f—x
printf ("%d\n", x);

o *p is equivalent to x

CS246 25 Lec07

Schematically
int x = 1; X
int *p; pl | =
P = &x; p ?
printf ("%d", *p); prints 1 x
*p = 2; P
printf("%d", x); prints 2
CS246 26 Lec07

Summary

* Pointer and integers are not exchangeable

 Levels of addressing (i.e. layers of pointers)
can be arbitrarily deep

* Remember the & that you MUST put in
front of scanf variables?

Failing to pass a pointer where one is
expected or vise versa always leads to
segmentation faults.

CS246 27 Lec07

