
CS246 Lec09

1

CS246 1 Lec09

Today’s Goals

•  Quick Intro to Strings
•  File I/O

  File Handle and File Pointer
  Character and Line I/O
  File Positioning

CS246 2 Lec09

File I/O: Streams
•  Java’s I/O streams consist of bytes and

Unicode characters.
•  C’s streams consist of solely bytes.
• <stdio.h> provides 3 standard streams:

  stdin – keyboard input
  stdout – screen output
  stderr – screen error output

•  Unix allows changing of default meanings
through redirection – more details later

Section 1

CS246 3 Lec09

Text Files / Binary Files
• <stdio.h> supports both
•  Any file is just a sequence of bytes
•  In a text file, a byte is always a character

•  In this lecture we cover text file I/O

text 00000011 0000010 00000111 00000110 00000111

'3' '2' '7' '6' '7'

01111111 11111111 binary

CS246 4 Lec09

File Pointers
•  Accessing a stream in C is done through file

pointers:
  A variable pointing to a file ⇒ FILE *fp;

  The type FILE is defined in stdio.h
  Certain streams have predefined pointers with

standard names – stdin, stdout and stderr

• fflush(FILE *fp)

fp

CS246 5 Lec09

Basic File Operations

•  Declaration (of a file pointer)
•  Opening/Closing
•  Reading/Writing

Section 2

CS246 6 Lec09

Opening/Closing a File
fp = fopen("file.dat", "r")

•  Full path name as well as the filename
may be included btw the quotes

•  Always test against NULL
•  Closing a file when done: fclose(fp);

"r" – reading
"w" – writing
(overwriting)!
"a" – appending

filename

Returns the null pointer NULL
(zero) on error, i.e. trying to
read a file that doesn’t exist.

CS246 Lec09

2

CS246 7 Lec09

Character I/O
•  Reading – returns char read or EOF

int fgetc(FILE *fp)

int getc(FILE *fp) // macro

int getchar() <==> int fgetc(stdin)

•  Writing – returns char written
int fputc(int c, FILE *fp)

int putc(int c, FILE *fp) // macro

int putchar(int c) <==> int fputc(…, stdin)

int ungetc(int c, FILE *fp)

CS246 8 Lec09

Example: File Copy by Char
FILE *in, *out;

// open both src and dest files
as // in and out, respectively

while ((c = fgetc(in)) != EOF) {

 fputc(c, out);

} filecopy.c

CS246 9 Lec09

Character and String
•  String is not a special type

  An array of characters
  Terminated with a special, null character

•  Null character
  Its integer value is 0.
  Its C representation is '\0'.

•  E.g., "abc" is internally

Section 3

'a' 'b' 'c' '\0'

'\0' ≠ '0' (zero)
'\0' ≠ '\n'

CS246 10 Lec09

Example

Big-O

Little-o Zero
Null character

'O' 'o' '0' '\0'

Values: 79 111 48 0

CS246 11 Lec09

Declaration/Initialization
•  Declaration: char s[5];
•  Initialization: char t[] = "abc";

char t[] = "abc";
printf("%c", t[0]); /* prints a */
printf("%d", t[0]); /* prints 97 */

printf("%c", t[3]); /* ??? */
printf("%c", t[4]); /* ??? */

Note: Strings cannot be assigned using '=' (except initialization).

CS246 12 Lec09

String Output

•  Use printf with the %s specification
Prints character elements until \0 is reached

char s[] = "abc";

printf("%s", s); /* prints abc */

printf("string: >%s<", s);
 /* prints string: >abc< */

Also possible: %10s

CS246 Lec09

3

CS246 13 Lec09

String Input
•  The gets function

#define BUFLEN 200

int main() {

 char buf[BUFLEN];

 gets(buf);
 printf("string: >%s<", buf);
}

allocate a large buffer
(e.g., more than 2 lines)

CS246 14 Lec09

Notes
• gets deletes \n from input.
•  If the user presses ENTER without any

other characters, the first position will be
the null character (called ‘empty string’).

•  In case the user enters a string longer than
the buffer, gets may cause a serious run-
time error.

•  Avoid gets if you can.

CS246 15 Lec09

Line I/O: Input
•  Reading – returns pointer to string read, NULL if

end of file
char* fgets(char *buf, int max, FILE *fp)

•  Strings are character arrays in C
• max indicates the maximum number of

characters to be read.
• max should be 1 less than the length of buf!
• gets is equivalent to fgets(…, stdin)

Section 4

CS246 16 Lec09

Line I/O: Output
•  Writing – returns number of chars written

int fputs(char *buf, FILE *fp)

CS246 17 Lec09

Example: File Copy by Line
int main() {
 char buf[BUFLEN], inFile[BUFLEN], outFile[BUFLEN];
 FILE *in, *out;

 printf("Enter source filename: ");
 fgets(inFile,BUFLEN-1,stdin); trim_newline(inFile);
 // get outFile as well from user

 in = fopen(inFile, "r");
 out = fopen(outFile, "w");

 if ((in == NULL) || (out == NULL)) {
 printf("*** File open error\n");
 return;
 }

 /* NULL returned at EOF */
 while (fgets(buf, BUFLEN-1, in) != NULL) {
 fputs(buf, out);
 }

 fclose(in); fclose(out);
 return 0;
}

filecopy2.c

CS246 18 Lec09

Formated I/O
•  Reading – returns number of matches or EOF

int fscanf(FILE *fp, "...", variableList);

•  Writing – returns number of chars written

int fprintf(FILE *fp, "...", variableList);

• scanf is equivalent to fscanf with stdin
• printf to fprintf with stdout

CS246 Lec09

4

CS246 19 Lec09

File Positioning
•  Each file has an associated file position
•  When a file is opened, the file position is set

either at the beginning or the end
SEEK_SET – beginning of file
SEEK_CUR – current file position
SEEK_END – end of file
int fseek(FILE *fp, long offset, int whence)

void rewind(FILE *fp)

 rewind(fp) <==> fseek(fp, 0L, SEEK_SET)
CS246 20 Lec09

Summary

•  Refer to text book or manual for more file
operations

•  Never forget to check the existence of a file
before attempting to perform any operations
on it

