
CS 246 Lec13

1

CS246 1 Lec13

Today’s Goals

•  Multiple source files
  Splitting your code
  Header files
  Sharing information
  Makefile

•  Writing large programs
  Modules

CS246 2 Lec13

The Compilation Process
•  Compiler:

  All .c files are converted/assembled into
Assembly Language, i.e. making .s files.

•  Assembler:
  The assembly language files from the previous

step are converted into object code (machine
code), i.e. .o files.

•  Linker:
  The object code is then linked to libraries and

other files for cross-reference.

Section 1

CS246 3 Lec13

Compilation

CS246 4 Lec13

Compiler/Assembler and Linker
•  Compile green.o: cc –c green.c
•  Compile blue.o: cc –c blue.c
•  Link together: cc green.o blue.o

CS246 5 Lec13

Multiple Source Files
•  The decision to divide your program into

multiple source files is not only a matter of
size.

•  One and only one .c file must contain a
main.

•  Functions that handle some common
aspects of a program should be grouped into
the same file.
  main, data structure implementation (i.e. linked

list), I/O, utilities, display/GUI, etc

Section 2

CS246 6 Lec13

Header Files
•  To share information between files.

  types
  macros
  functions
  externals

•  Each .c should have its own .h.
•  Information share btw. several or all files

should go into one .h (usually main.h).

CS 246 Lec13

2

CS246 7 Lec13

Types and Macros
•  Types:

  typedef
  enum

•  Macros
  #include
  #define
  #ifdef
  #error

CS246 8 Lec13

Sharing Functions
•  If a function is to be called in more than one

file, put its prototype into a .h.
•  Always include the .h with f’s prototype

in the .c that contains f’s definition.
  For any .c, always include your own .h.

•  A header file should never contain function
definitions.

CS246 9 Lec13

Sharing Variables
•  Variables shared between files are defined

in one file, and declared in all files that need
to access it.
  Definition of a variable causes the compiler to

set memory aside

• extern
  extern int i, a[];
  extern informs the compiler that the variables i

and a are defined elsewhere.

CS246 10 Lec13

extern variables

• extern declarations often go in to a
header file.

•  The variable must have one (and only one)
definition among all files.
  int x;

•  Any file that wishes to access a variable that
is defined in another file must declare such
a variable as extern
  extern int x;

CS246 11 Lec13

Example
•  The implementation of a stack-based

calculator:
  1 2 – 4 5 + * ==> (1-2) * (4+5)

•  Two globals:
  double s[MAX];
  int sp = 0;

•  Stack related operations
•  I/O operations

Section 3

CS246 12 Lec13

Program Structure
#include <stdio.h>
enum _bool {FALSE, TRUE} Bool;

main.h

init.c

#include "init.h"
#include "main.h"

void init() {}

#include <stdlib.h>
#incluce "init.h"
#include "io.h"
#include "stack.h"
#include "main.h"

int sp = 0;
double s[MAX];
int main () {}

main.c

#include "stack.h"
#include "main.h"
extern int sp;
extern double s[];
void push(double d){}
double pop(){}
double top(){}
int isempty(){}
int isfull(){}

stack.c

#include <ctype.h>
#include "io.h"
#include "main.h“

Optype getop(char s[]){}

io.c

void init();

init.h

#define MAX 100

void initstack();
void push(double d);
double pop();
double top();
int isempty();
int isfull();

stack.h

#define MAXOP 100
typedef enum _optype {NUM='n', PLUS='+', MINUS='-',
MULT='*', DIV='/', NEWLINE='\n'} Optype;

Optype getop(char s[]);

io.h

CS 246 Lec13

3

CS246 13 Lec13

main.c
int main() {
 Optype t; char str[MAXOP]; double d;
 init();
 while((t = getop(str)) != EOF) {
 switch(t) {
 case NUM:

 push(atof(str)); break;
 case PLUS:
 d=pop(); push(pop()-d); break;
 case MINUS:
 push(pop()-pop()); break;
 case NEWLINE:
 printf("\t%.2f\n", pop()); break;
 default:
 fprintf(stderr, "Error, unknown command %s\n", str); break;
 }
 }
 return 0;
}

CS246 14 Lec13

io.c
Optype getop(char s[]) {
 int i=0; char c;

 while ((s[0] = c = getchar()) == ' ' || c == '\t') ;

 s[1] = '\0';

 if (!isdigit(c) && c != '.') /* not a number */

 return c;

 if (isdigit(c)) /* collect int part */

 while(isdigit(s[++i] = c = getchar())) ;

 if (c == '.') /* collect fractional part */

 while(isdigit(s[++i] = c = getchar())) ;

 s[i] = '\0';

 if (c != EOF)

 ungetc(c, stdin);

 return NUM;

}

CS246 15 Lec13

Protecting your header files
•  Always enclose your .h with these

directives:
#ifndef NAME_H
#define NAME_H
/* header file contents */
#endif

• #error – to check for conditions under
which the header file shouldn’t be included

 #ifndef DOS
 #error Graphics supported only under DOS
 #endif

CS246 16 Lec13

Building a Multiple-File Program
•  Makefile

  List all source files to be compiled and linked
  Lists dependencies among all files
calc: main.o init.o io.o stack.o
 cc –o calc main.o init.o io.o
stack.o

main.o: main.h init.h io.h stack.h
 cc –c main.c

  target: list of files
  build/rebuild command

Section 4

CS246 17 Lec13

Dependency Graph
•  The principle by which Make operates
•  In writing a Makefile, you are specifying

the dependencies needed to build your
executable

CS246 18 Lec13

Updates According to
Dependencies

•  Suppose you edited io.c
• Make realizes the update based on

timestamp of io.c
• Make will recompile io.o and relink
project1 automatically

CS 246 Lec13

4

CS246 19 Lec13

Dependencies in Make syntax
• target: source file(s)

 command (tabs in front!!)

CS246 20 Lec13

Makefile Flags/Macros
• CC = gcc
• CFLAGS = -g -Wall -ansi
• -D – allows the value of a named macro to

be specified
  -DDEBUG=1 == -DDEBUG

• -UD – undefines a named macro
• $(CC) $(CFLAGS) –DDEBUG –c
main.c

CS246 21 Lec13

Programming-in-the-large
•  Most full-featured programs today are at

least 100,000 lines long.
•  Careful design

  Do not limit any possible future extensions

•  Extreme attention to style
  Lots of people are going to be working on it

•  Planning for maintenance
  It IS going to be modified many times

Section 5

CS246 22 Lec13

Module-based Programming
•  A module is a collection of services

(functions), some of which are available to
other parts of the program (clients) through
an interface (header file).
  Abstraction – carefully designed modules

should hide implementations
  Reusability – in order to maximize this feature,

modules should be as basic and as minimal as
possible

  Maintainability – easier to locate and fix bugs

CS246 23 Lec13

Cohesion and Coupling
•  High cohesion

  Elements in each module should be closely
related – (i.e. all the stack functions)

•  Low coupling
  Modules should be as independent of each

other as possible

CS246 24 Lec13

Summary

•  Learn to master the structure of a multiple-
file program.

•  Properly setting up the “bones” of a
program will extend the initial set-up time,
but one ends up saving time and frustration
in the end.

•  Think 3 times before you start, and if you
have partners, meet 5 times before you
code.

