
CS246 Lec15

1

CS246 1 Lec15

Today’s Goals

•  Self-referential Structures
•  Linked Lists

  single
  double
  general purpose
  memory issues

CS246 2 Lec15

Self-referential Structures

typedef struct lnode {
 int x;
 struct lnode *next;
} Listnode;

•  A basic data type (building block) for
complex data structures such as trees and
linked lists.

•  Structure tags (i.e. tnode, lnode) are
required for self-referential structure
declarations.
typedef struct tnode {
 int x;
 struct tnode *left;
 struct tnode *right;
} Treenode;

Section 1

CS246 3 Lec15

Linked Lists
•  A linked list stores a lists of items

(structs).
•  Linked lists are typically unbounded, that is,

they can grow infinitely.
•  An array is a single consecutive piece of

memory, a linked list is made of many
pieces.

•  A linked list offers quick insertion, deletion
and reordering of the items

Section 2

CS246 4 Lec15

Singly and Doubly Linked Lists
•  A singly linked list has each struct

containing only one pointer to the next.
•  A doubly linked list has each struct

containing both a pointer to the previous as
well as the next struct in the list.

NULL

head tail
single

NULL

double

NULL

head tail

CS246 5 Lec15

struct node
struct node {

 int num;

 struct node *next;

};

typedef struct node Node;

// typedef Node *Nodeptr;

Node *head = NULL;

Node *tail = NULL;

singlelist.c

CS246 6 Lec15

makenode
Node *makenode (int x) {

 Node *new;

 if ((new = (Node *) malloc(sizeof(Node)))!= NULL) {

 new->num = x;

 new -> next = NULL;

 }

 else {

 printf("Out of memory!\n");

 exit(0);

 }

 return new;

}

CS246 Lec15

2

CS246 7 Lec15

append
void append (Node *p) {

 if (head == NULL) {

 head = p;

 tail = p;

 }

 else {

 tail->next = p;

 tail = p;

 }

}

CS246 8 Lec15

delete
void delete (Node *p) {

 Node *tmp, *prev;

 if ((p == head) && (p == tail))

 head = tail = NULL;

 else if (p == head)

 head = p->next;

 else {

 for(tmp=head, prev=NULL; tmp!=p; prev=tmp, tmp=tmp->next);

 if (p == tail)

 tail = prev;

 prev->next = p->next;

}

CS246 9 Lec15

insert_after
/* insert a node p after p2 */

void insert_after (Node *p, Node *p2) {

 p->next = p2->next;

 if (p2 == tail)

 tail = p;

 p2->next = p;

}

CS246 10 Lec15

print/search
void print() {

 Node *tmp;

 for (tmp = head; tmp != NULL; tmp = tmp->next)

 printf("%d ", tmp->num);

 printf("\n");

}

Node *search(int x) {

 Node *tmp;

 for (tmp = head; tmp != NULL; tmp = tmp->next)

 if (tmp->num == x)

 return tmp;

 return NULL;

}

CS246 11 Lec15

main
int main() {

 Node *tmp;

 int i;

 for (i = 0; i < 10; i++) {

 tmp = makenode(i);

 append(tmp);

 }

 print();

 tmp = makenode(9);

 insert_after(tmp, head->next->next);

 delete(head->next);

 print();

}

CS246 12 Lec15

clear

void clear() {

 Node *tmp, *tmp2;

 for (tmp = head; tmp != NULL; tmp = tmp2) {

 tmp2 = tmp->next;

 free(tmp);

 }

 head = tail = NULL;

}

•  Note that this only works if structure Node
does not contain any other pointers to
memory

CS246 Lec15

3

CS246 13 Lec15

• void *
  Generic pointer – just a memory address

  Can be casted to any type

General Purpose Linked Lists

struct llist_node {

 void *data;

 struct llist_node *prev;

 struct llist_node *next;

 };

typedef struct llist_node Lnode;

Section 3

CS246 14 Lec15

General Purpose makenode
Lnode *makenode (void *data) {

 Lnode *new = NULL;

 if ((new = (Lnode *) malloc(Lnode)) != NULL) {

 new->prev = NULL;

 new->next = NULL;

 new->data = data;

 }

 return new;

 }

CS246 15 Lec15

Linked List in Java
class ListNode{

 int item;

 ListNode next;

 ...

};

class List {

 ListNode head;

 ...

}

•  In Java, a linked list and
the nodes in the list are
of different types.

•  This can be simulated in
C.

•  However, there are
advantages to keeping
the same type.

Section 4

CS246 16 Lec15

Avoid Memory Leaks Like Plagues
•  Whenever dynamically allocated storages

are in use, memory leaks are plentiful
•  The problem is more evident when

complicated data structures are used
  Mixing: list of trees, trees of lists, etc
  Nesting: list of lists of lists

•  When implementing complex data
structures, plan your clear/release
functions very carefully

CS246 17 Lec15

Shallow and Deep Copying
•  There are two ways to make a copy of a

linked list
•  Shallow copy:

  The new list consist of duplicated pointers only

•  Deep copy:
  The new list consist of duplicated data as well

as pointers

h1 t1

h2 t2

CS246 18 Lec15

Summary

•  Linked lists are the most commonly used
data structure in programming

•  Learning how to implement a proper linked
list is essential

•  Watch out for memory leaks!
•  Explore general purpose linked lists

