
CS246 Lec16

1

CS246 1 Lec16

Today’s Goals

•  More on Pointers
  The dangling pointer
  Pointer arithmetic
  Pointers to pointers
  const and pointers

•  Function pointers
•  Memory blocks

CS246 2 Lec16

The Dangling Reference Problem
•  An unassigned pointer (i.e. not pointing to

any memory) is known as a dangling pointer.
•  Dereferencing any such pointers will surely

result in a segmentation fault or bus error.
  Always assign your pointers to malloced

memory or by & of a variable.
  Remember that stack variables (i.e. locals in

functions) are deallocated as soon as a function
returns. Therefore, avoid assigning pointers to
addresses of such variables.

Section 1

CS246 3 Lec16

Pointer Arithmetic
•  These operations are only well-defined if

the address involved are within a single
memory block (array or malloced)
  The sum of a pointer and an integer
  The difference of a pointer and an integer
  Pointer comparison
  The difference between two pointers

Section 2

CS246 4 Lec16

Pointers to Pointers
•  A variable can be modified by a function if and

only if it is passed by reference/pointer.
•  If the variable to be modified is a pointer itself,

one must pass a pointer to pointer, i.e. one must
always add an extra level of referencing.

 int make_node(Node **new) {
 *new=(Node *)malloc(sizeof(Node));
 if (*new != NULL)

 return 1;
 else
 return 0;
 }

CS246 5 Lec16

Use const to Protect Pointers
•  We already know that keyword const

prevents the value of a variable from being
changed.
  const int x;
  void f(const int *p);
  Prevents *p from being changed
  void f(int * const p);
  Prevents the pointer p itself from being changed
  void f(const int * const p);

Section 3

CS246 6 Lec16

Function Pointers
•  Function pointers point to memory addresses

where functions are stored.
  int (*fp) (void);
  A function pointer determines the prototype of a

function, but not its implementation.
  Any function of the identical prototype can be

assign to the function pointer.
  A function without its argument lists becomes its

own pointer
  Function pointers do not need & or *

Section 4

CS246 Lec16

2

CS246 7 Lec16

Function Pointer: Example
#include <stdio.h>

int main() {
 int i = 1;

 int (*fp) (const char *, ...) = printf;
 fp("i == %d\n", i);
 (*fp)("i == %d\n", i);
 return 0;
}

•  Notice no need for &printf or (*fp)
•  But I like to stick with (*fp)

CS246 8 Lec16

Overriding Functions
•  Also known as late-binding, this is emulated in C with

function pointers.
•  Together with generic pointers (void *), one can have

typeless parameters and functions.

void fd (void *base, size_t n, size_t size){
 double *p = base;
 for (p = base; p < (double*) (base+(n*size)); p++) ;
}
int main() {
 double a[5] = {0, 1, 2, 3, 4};
 if (type == DOUBLE) {
 void (*f) (void *, size_t, size_t) = fd;
 (*f)(a, 5, sizeof(double));
 }
}

CS246 9 Lec16

Printing of Generic Arrays
typedef struct {
 double x;
 double y;
} Point;
int main() {
 double a[5] = {0, 1, 2, 3, 4};
 int b[5] = {5, 6, 7, 8, 9};
 Point ps[2] = {{0.5, 0.5}, {1.5, 2.5}};

 gp(a, 5, sizeof(double));
 gp(b, 5, sizeof(int));
 gp(ps, 2, sizeof(Point));
}

CS246 10 Lec16

Printing of Generic Arrays
void gp (void *b, size_t n, size_t size){
 char *p;
 for (p=b; p <(char*)(b+(n*size)); p+=size){
 switch (size) {
 case sizeof(double):
 printf("%.2f ", *(double*)p);
 break;
 case sizeof(int):
 printf("%d ", *(int*)p);
 break;
 case sizeof(Point):
 printf("x = %.2f ", ((Point *)p)->x);
 printf("y = %.2f ", ((Point *)p)->y);
 break;
 }}
 printf("\n"); }

CS246 11 Lec16

qsort

• qsort and its comparison function:
  sorts a generic array of any type
  stdlib.h
  void qsort(void *base, size_t ne, size_t s,
int (*compar) (const void *, const void *));

  base points to the start (array) element
  ne is the number of elements to be sorted
  s is the size of the elements (in the array)
  compar is the generic comparison function

supplied by user

CS246 12 Lec16

qsort Example
int vs[] = {40, 10, 100, 90, 20, 25};
int comp (const void *a,
 const void *b){
 return (*(int*)a - *(int*)b);
}

int main () {
 qsort (vs, 6, sizeof(int), comp);
}

CS246 Lec16

3

CS246 13 Lec16

compar
int comp_nodes (const void *a, const void *b) {
 struct Node *n1 = a; struct Node *n2 = b;

 if ((n1->num < n2->num) return -1;
 else if (n1->num > n2->num) return 1;
 else return 0;
 /* or
 return ((struct Node *)n1)->num - ((struct Node

*)n2)->num; */
}

qsort(nodes, 10, sizeof(struct Node), comp_nodes);

CS246 14 Lec16

Simulating Methods
•  Function pointers used together with struct

  typedef struct _Node {
 int num;

 struct Node *prev;

 struct Node *next;

 struct Node * (*make_node) (int);

 } Node;

CS246 15 Lec16

Other Uses of Function Pointers
•  Function pointers can be used like any

pointers.
  Array of function pointers

 void (*file_cmd[])(void) = { new_cmd,
 open_cmd,
 close_cmd,
 save_cmd,
 print_cmd,
 exit_cmd

 };

CS246 16 Lec16

Other Uses of Function Pointers
•  Function returning pointer to function
•  Function that takes a double and returns a

pointer to a function which takes a char *
and returns an int:
  Without typedef:

 int (*f(double)) (char *);

  With typedef:
 typedef int (*Pfunc) (char *);

 Pfunc f(double);

CS246 17 Lec16

Working with Memory Blocks
•  Generic pointers can not be dereferenced.
• string.h functions to work with typeless

memory blocks pointed to by void *.
  void *memcpy(void *des,void *src,size_t l);
  void *memmove(void *des,const void *src,size_t l);
  int memcmp(const void *p,cost void *q,size_t l);
  void *memchr(const void *p, int val, size_t l);

•  These are generic versions of the corresponding string
functions (strcpy, strcmp and strchr).

•  memmove is used instead of memcpy if the two blocks
overlap.

Section 5

CS246 18 Lec16

File I/O on Memory
Blocks:Binary Files

•  Binary files do not have a line-oriented
structure.

•  They consist of blocks of objects, and the
format of these objects are application as
well as machine dependent.

•  When opening a binary file, always append
a 'b' to the second argument, i.e.
  fopen("test.exe", "wb");
  fopen("test.exe", "rb");

Section 6

CS246 Lec16

4

CS246 19 Lec16

Current File Position
• long ftell(FILE *fp);
•  Returns the current file position, or –1L.
• fseek is used to set the file position:

fseek(fp, -sizeof(double), SEEK_CUR);

• ftell’s return value is often used by fseek:
long pos;

pos = ftell(fp);

/* some code */

fseek(fp, pos, SEEK_SET);
CS246 20 Lec16

Read/Write a Binary File
•  size_t fread(void *buf, size_t s,
size_t ne, FILE *in);

•  Reads up to ne elements, each of size s in
bytes and stores them in buf

•  size_t fwrite(const void *buf,
size_t s, sizt_t ne, FILE *out);

•  Similarly, writes from buf up to ne blocks,
each of size s

•  Number of elements (not bytes!) successfully
read/written is returned

CS246 21 Lec16

Examples
•  Converting a text file of ints to binary:

while (fscanf(in, "%d", &i) == 1)
 if (fwrite(&i,sizeof(int),1,out)!=1){
 fprintf(stderr, "Error writing file\n");
 break;}

•  fwrite is convenient for storing data in a file
temporarily (or another program), which can later
be read back with fread.

 long pos; pos = ftell(fp);
 fpos_t pos; fgetpos(fp, &pos);
 fwrite(&n, sizeof(struct Node), 1, fp);
 fseek(fp, pos, SEEK_SET); fsetpos(fp, &pos);
 fread(&n,sizeof(n), 1, fp);

CS246 22 Lec16

Summary

•  Be careful with pointers!
•  Function pointers can be really useful,

especially when writing larger applications.
• fread and fwrite are designed to copy

large chunks of memory from/to file.
•  Although primarily used in binary file I/O,

with a little care in address/size calculation,
they can be used with text files just as well.

