(CS246 Lecl?7

Today’s Goals

* Bitwise operators
o shift
@ complement
o and
o exclusive and inclusive or

« Bit fields
 Bit fields and structs

— Section 1
Bitwise Operators

» These operators work at bit-level.

+ Bit manipulation and other low-level
operations are extremely useful for system
programming.

= OS
o compilers
o graphics
« Fast execution and efficient use of memory.
* Bits are indexed from 0 starting from the right

CS246 2 Lecl7

CS246 1 Lecl7
Shift
* << — left shift, >> — right shift
o i << j

o shifts the bits in 1 by j places to the left
o for each “shifted off” bit to the left, a 0 bit appears on

the right
unsigned int i, j;
i =13; 0000000000001101

J=1i<<2; 0000000000110100
j=1i>>2; 0000000000000011

» Operands may be of any integer type, but use
unsigned for portability

CS246 3 Lecl7

More Bitwise Ops

* ~ —complement
e & —and, » — exclusive or, | — inclusive or

unsigned int i, j, k;

Precedence
« Shift operators have lower precedence than
arithmetic operators
Bl << 2+ 1==>1 << (2+1)
o ~>ghift>&>*> |
i & ~j | k

» ~, & " and | have lower precedence than
relational and equality operators:

o if (status & 0x4000 !'= 0) ==> if
(status & (0x4000 !'= 0))

+ &=, *=and | = work as expected.

CS246 5 Lecl7

i=21; 0000000000010101
j = 56; 0000000000111000
k = ~i; 1111111111101010
k=1i¢& j; 0000000000010000
k=1i| j; 0000000000111101
k=1i*3; 0000000000101101
CS246 4 Lecl7
Machine Dependency

* The result of bitwise operators is often
machine dependent, that is, it depends on
the size of integers on the local machine.

* However, ~ can often be used to initialize
integers machine-independently.
o ~0 —an integer whose bits are all 1

o ~0x00f — an integer whose bits are all 1
except for the last 4

CS246 6 Lecl7

(CS246 Lecl?7

Using Bitwise Ops

* Setting a bit (on, set to 1)
@i = 0x0000; 0000000000000000
i |= 0x0010; 0000000000010000
» The constant used to set a bit is known as a
mask.
« Shift operators can be used to create a mask
°i |=1<< 3
@ i’s bit 3 will be set to 1
oi |=1 << j

CS246 7 Lecl7

Using Bitwise Ops, ctd

* Clearing a bit (turn off, set to 0)
° i = Ox00ff; 0000000011111111
i &= ~0x0010; 0000000011101111

* Clearing a bit whose position is stored in a
variable j

oi &= ~(1 << j)
* Testing a bit

oif (i & 0x0010) — tests the bit 4

oif (i & 1 << j) —teststhe j bit

CS246 8 Lecl7

enum and bit masks

» Use enum to give names to masks
o enum{BLUE = 1, GREEN = 2, RED = 4};
o i |= BLUE; — setsthe BLUE bit
o i &= ~BLUE; — clears the BLUE bit
o if (i & BLUE) — tests the BLUE bit
* Several bits
o i |= BLUE|GREEN - sets the BLUE and GREEN bits
o i &= ~(BLUE|GREEN) - clears BLUE and GREEN
o if (i&(BLUE|GREEN)) - tests BLUE and GREEN

CS246 9 Lecl7

— Section 2

Bit Fields

* A group of consecutive bits is a bit field.

* Modifying a bit field:
o Storing binary 101 in bits 4-6 of variable i
oj =3i & ~0x0070 | 0x0050;
o The & clears bits 4-6 and the | sets bits 4 and 6

o Just using | will not always work, as it doesn’t
clear bit 5

+ Storing j into a particular bit field
oi =1 & ~0x0070 | j << 4

CS246 10 Lecl7

Bit Fields in Structures

 C allows structure declarations whose
members are bit-fields.

struct file_date { struct file date fd;
unsigned int day: 5;
unsigned int month: 4; fd.day = 19;

unsigned int year: 7; fd.month = 4;
} fd.year = 24; /* 2004 */

* Year dates from 1980. Being 7-bits, all
DOS programs have a year 2108 problem.
[ofoi1{1]0}0{0fol1]0}0[1]0l0211]

CS246 11 Lecl7

Bit Fields and Memory

« Bit Fields do not have addresses
o scanf ("$d", &fd.day); /*wrong*/

» How bit fields are stored is highly machine
and implementation dependent. The
example in the previous slide assumes 16-
bit units.

» When bit fields do not fit a storage unit
precisely, what happens is compiler
dependent.

CS246 12 Lecl7

(CS246 Lecl?7

Summary

* Bitwise ops and masks occur more often
than you would expect.

« Bit and bit fields manipulations are highly
efficient, but very machine dependent.

» At the very least, one needs to find out the
size of a storage unit.

CS246 13 Lecl7

