
CS246 Lec17

1

CS246 1 Lec17

Today’s Goals

•  Bitwise operators
  shift
  complement
  and
  exclusive and inclusive or

•  Bit fields
•  Bit fields and structs

CS246 2 Lec17

Bitwise Operators
•  These operators work at bit-level.
•  Bit manipulation and other low-level

operations are extremely useful for system
programming.
  OS
  compilers
  graphics

•  Fast execution and efficient use of memory.
•  Bits are indexed from 0 starting from the right

Section 1

CS246 3 Lec17

Shift
•  << – left shift, >> – right shift

  i << j
  shifts the bits in i by j places to the left
  for each “shifted off” bit to the left, a 0 bit appears on

the right
unsigned int i, j;
i = 13; 0000000000001101
j = i << 2; 0000000000110100
j = i >> 2; 0000000000000011

•  Operands may be of any integer type, but use
unsigned for portability

CS246 4 Lec17

More Bitwise Ops
• ~ – complement
• & – and, ^ – exclusive or, | – inclusive or

unsigned int i, j, k;
i = 21; 0000000000010101
j = 56; 0000000000111000
k = ~i; 1111111111101010
k = i & j; 0000000000010000
k = i | j; 0000000000111101
k = i ^ j; 0000000000101101

CS246 5 Lec17

Precedence
•  Shift operators have lower precedence than

arithmetic operators
  i << 2 + 1 ==> i << (2+1)

• ~ > shift > & > ^ > |
  i & ~j | k

• ~, &, ^ and | have lower precedence than
relational and equality operators:
  if (status & 0x4000 != 0) ==> if
(status & (0x4000 != 0))

• &=, ^= and |= work as expected.
CS246 6 Lec17

Machine Dependency
•  The result of bitwise operators is often

machine dependent, that is, it depends on
the size of integers on the local machine.

•  However, ~ can often be used to initialize
integers machine-independently.
  ~0 – an integer whose bits are all 1
  ~0x00f – an integer whose bits are all 1

except for the last 4

CS246 Lec17

2

CS246 7 Lec17

Using Bitwise Ops
•  Setting a bit (on, set to 1)

  i = 0x0000; 0000000000000000
 i |= 0x0010; 0000000000010000

•  The constant used to set a bit is known as a
mask.

•  Shift operators can be used to create a mask
  i |= 1 << 3
  i’s bit 3 will be set to 1
  i |= 1 << j

CS246 8 Lec17

Using Bitwise Ops, ctd
•  Clearing a bit (turn off, set to 0)

  i = 0x00ff; 0000000011111111
 i &= ~0x0010; 0000000011101111

•  Clearing a bit whose position is stored in a
variable j
  i &= ~(1 << j)

•  Testing a bit
  if (i & 0x0010) – tests the bit 4
  if (i & 1 << j) – tests the j bit

CS246 9 Lec17

enum and bit masks
•  Use enum to give names to masks

  enum{BLUE = 1, GREEN = 2, RED = 4};
  i |= BLUE; – sets the BLUE bit

  i &= ~BLUE; – clears the BLUE bit

  if (i & BLUE) – tests the BLUE bit

•  Several bits
  i |= BLUE|GREEN – sets the BLUE and GREEN bits
  i &= ~(BLUE|GREEN) – clears BLUE and GREEN
  if (i&(BLUE|GREEN)) – tests BLUE and GREEN

CS246 10 Lec17

Bit Fields
•  A group of consecutive bits is a bit field.
•  Modifying a bit field:

  Storing binary 101 in bits 4-6 of variable i
  i = i & ~0x0070 | 0x0050;
  The & clears bits 4-6 and the | sets bits 4 and 6
  Just using | will not always work, as it doesn’t

clear bit 5
•  Storing j into a particular bit field

  i = i & ~0x0070 | j << 4

Section 2

CS246 11 Lec17

Bit Fields in Structures
•  C allows structure declarations whose

members are bit-fields.

•  Year dates from 1980. Being 7-bits, all
DOS programs have a year 2108 problem.

struct file_date {
 unsigned int day: 5;
 unsigned int month: 4;
 unsigned int year: 7;
}

struct file_date fd;

fd.day = 19;
fd.month = 4;
fd.year = 24; /* 2004 */

0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1

CS246 12 Lec17

Bit Fields and Memory
•  Bit Fields do not have addresses

  scanf("%d", &fd.day); /*wrong*/
•  How bit fields are stored is highly machine

and implementation dependent. The
example in the previous slide assumes 16-
bit units.

•  When bit fields do not fit a storage unit
precisely, what happens is compiler
dependent.

CS246 Lec17

3

CS246 13 Lec17

Summary

•  Bitwise ops and masks occur more often
than you would expect.

•  Bit and bit fields manipulations are highly
efficient, but very machine dependent.

•  At the very least, one needs to find out the
size of a storage unit.

