Software Engineering |

Based on materials by Ken Birman, Cornell



Software Engineering E

* The art by which we start with a problem
statement and gradually evolve a solution

* There are whole books on this topic and most
companies try to use a fairly uniform approach
that all employees are expected to follow

* Interface design, class hierarchy are but two
steps in this process



The software design cycle

 Some ways of turning a problem statement

into a program that we can debug and run
* Top-Down, Bottom-Up Design

Software Process (briefly)

Modularity

Information Hiding, Encapsulation

Principles of Least Astonishment and “DRY”

Refactoring



Top-Down Design

e Start with big picture:
User
Interface
Tovs Inventor Sales Customer
Y Y Planning Database
Subtypes Automated Marketing
of Toys Reordering Subsystem

Web Toy Cash
Demos Register
* |nvent abstractions at a high level
* Decomposition / “Divide and Conquer”




Not a perfect, pretty picture

* |tis often easy to take the first step but not the
second one

* Large abstractions come naturally. But details
often work better from the ground up

 Many developers work by building something
small, testing it, then extending it
— |t helps to not be afraid of needing to recode things



Top-Down vs. Bottom-Up

* |[sone way better? Not really!
* |It's sometimes good to alternative

* By coming to a problem from multiple angles you might
notice something you had previously overlooked

* Not the only ways to go about it

 Top-Down: harder to test early because parts
needed may not have been designed yet

* Bottom-Up: may end up needing things
different from how you built them



Software Process

* For simple programs, a simple process...

-
il “Waterfall”

Implementation

-

Maintenance

e But to use this process, you need to be sure that the
requirements are fixed and well understood!

— Many software problems are not like that

— Often customer refines requirements when you try to
deliver the initial solution!



Incremental & Iterative

* Deliver versions of system in several small cycles

Start
TR et Verify &
Feature(s) Release
Design &
Implement

* Recognizes that for some settings, software
development is like gardening

* You plant seeds... see what does well... then replace
the plants that did poorly




Information Hiding

 What “information” should we try to hide?

— “Internal” design decisions.
* interface: everything that is externally accessible

 What OOP concept(s) relates to the idea of
information hiding?



Degenerate Interfaces

* Public fields and global variables are usually a
Bad Thing:

double totalCount__ SallysVariable_DoNotTouch = O;

int main() {

}

* Anybody can change them; we don’t maintain
control



Use of interfaces?

* When team builds a solution, interfaces can
be valuable!

— Rebecca agrees to implement the code to extract
genetic data from files

— Tom will implement the logic to compare DNA
— Willy is responsible for the GUI

* By agreeing on the interfaces between their

respective modules, they can all work on the
program simultaneously



Principle of Least Astonishment

 Interface should “hint” at its behavior

Bad:
int product(int a, int b) {
return a*b >0 ? a*b : -a*b;

}



Principle of Least Astonishment

 Interface should “hint” at its behavior

Bad:
int product(int a, int b) {
return a*b >0 ? a*b : -a*b;

}

Better:

/** Return absolute value of a * b */
int absProduct(int q, int b) {

return a*b > 0 ? a*b : -a*b;
}

* Names and comments matter!



Outsmarting yourself

A useful shorthand... Instead of

something = something * 2;

.. use

something *= 2;

* All such operators:

= *= /=

0/°:

N

14



Principle of Least Astonishment

* Unexpected side effects are a Bad Thing

int times(int& value, int factor) {
value *= factor;
return value;

}

inti=1;

int j = times(i,10); —

Developer trying to be
clever. But what does
codedotoi?

15




Duplication

It is common to find some chunk of working code, make a
replica, then edit the replica

But this makes your software fragile: later, when code you
copied needs to be revised, either

* The person doing that changes all instances, or
* some become inconsistent
Duplication can arise in many ways:
e constants (repeated “magic numbers”)
* code vs. comment
* within an object’s state



“DRY” Principle

Don’t Repeat Yourself

Nice goal: have each piece of knowledge live
in one place

But don’t go crazy over it

— DRYing up at any cost can increase dependencies
between code

— “3 strikes and you refactor” (i.e. clean up)



Refactoring

e Refactor: improve code’s internal structure
without changing its external behavior

* Most of the time we’re modifying existing software

* “Improving the design after it has been written”

* Refactoring steps can be very simple:

double weight(double mass) {

return mass * 9.80665;
}

#Hdefine GRAVITY = 9.80665;

public double weight(double mass) {
return mass * GRAVITY;
}

 Other examples: renaming variables, methods,

classes




Why is refactoring good?

* |f your application later gets used as part of a
NASA mission to Mars, it won’t make

mistakes

* Every place that the gravitational constant
shows up in your program a reader will realize

that this is what they are looking at

 The compiler may actually produce better
code



Common refactorings

* Rename something
— IDE’s like Eclipse will do it all through your code
— Warning: Eclipse doesn’t automatically fix comments!

 Take a chunk of your code and turn it into a
method

— Anytime your “instinct” is to copy lines of code from
one place in your program to another and then
modify, consider trying this refactoring approach
instead...

— ... even if you have to modify this new method, there
will be just one “version” to debug and maintain!



Extract Method

* A comment explaining what is being done
usually indicates the need to extract a method

double totalArea() { double totalArea() {
// add the circle .ci'r'ea += circleArea(radius);
area +=

PI * pow(radius,2); }

} double circleArea (double radius) {

return PT * pow(radius, 2);
}

* One of most common refactorings



Extract Method

Before
if (date.before(SUMMER_START) ||

date.after(SUMMER_END)) {
charge = quantity * winterRate + winterServiceCharge;

}

else {
charge = quantity * summerRate;
}

After
if (isSummer(date)) {

charge = summerCharge(quantity);
}

else {
charge = winterCharge(quantity);
}




Refactoring & Tests

* Eclipse supports various refactorings

* You can refactor manually

e Automated tests are essential to ensure
external behavior doesn’t change

* Don’t refactor manually without
retesting to make sure you didn’t
break the code you were “improving”!

 More about unit testing later...

Rename...
Move...

Change Method Signature...

Extract Local Variable...
Extract Constant...
Inline...

X #R
Aw:4Y
X#C
L

&l

Convert Anonymous Class to Nested...
Convert Member Type to Top Level...

Convert Local Variable to Field...

Extract Superclass...

Extract Interface...

Use Supertype Where Possible...
Push Down...

Pull Up...

Extract Class...
Introduce Parameter Object...

Introduce Indirection...
Introduce Factory...
Introduce Parameter...
Encapsulate Field...

Ceneralize Declared Type...
Infer Generic Type Arguments...

Migrate JAR File...
Create Script...
Apply Script...
History...

23



Summary

* Our challenge is to use the features of
programming languages to build clean,
elegant software that doesn’t duplicate
functionality in confusing ways

* The developer’s job is to find abstractions and
use their insight to design better code!



